Changing the volume increases the area that the molecules collide with so the force is spread over a larger area.
Answer:
0.295 g Co
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
3.01 × 10²¹ atoms Co
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of Co - 58.93 g/mol
<u>Step 3: Convert</u>
<u />
= 0.294552 g Co
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
0.294552 g Co ≈ 0.295 g Co
It states the fact, which we now know, that electrons are responsible for the chemical bonding. According to this theory, valency is the number of electrons present in the outermost energy shell of the atom. This energy shell is called valency shell.
Answer:
a) 0.525 mol
b) 0.525 mol
c) 0.236 mol
Explanation:
The combustion reactions (partial and total) will be:
C₇H₁₆ + (15/2)O₂ → 7CO + 8H₂O
C₇H₁₆ + 11O₂ → 7CO₂ + 8H₂O
---------------------------------------------------
2C₇H₁₆ + (37/2)O₂ → 7CO + 7CO₂ + 16H₂O
It means that the reaction will form 50% of each gas.
a) 0.525 mol of CO
b) 0.525 mol of CO₂
c) The molar mass of heptane is: 7*12 g/mol of C + 16*1 g/mol of H = 100 g/mol
So, the number of moles is the mass divided by the molar mass:
n = 11.5/100 = 0.115 mol
For the stoichiometry:
2 mol of C₇H₁₆ -------------- (37/2) mol of O₂
0.115 mol of C₇H₁₆ --------- x
By a simple direct three rule:
2x = 2.1275
x = 1.064 mol of O₂
Which is the moles of oxygen that reacts, so are leftover:
1.3 - 1.064 = 0.236 mol of O₂