<u>Answer-</u>
![\boxed{\boxed{\frac{7}{3}}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7B%5Cfrac%7B7%7D%7B3%7D%7D%7D)
<u>Solution-</u>
Rational Root Theorem-
![f(x)=a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+.......+a_1x+a_0\ \ \ and\ a_n\neq 0](https://tex.z-dn.net/?f=f%28x%29%3Da_nx%5En%2Ba_%7Bn-1%7Dx%5E%7Bn-1%7D%2Ba_%7Bn-2%7Dx%5E%7Bn-2%7D%2B.......%2Ba_1x%2Ba_0%5C%20%5C%20%5C%20and%5C%20a_n%5Cneq%200)
All the potential rational roots are,
![=\pm (\dfrac{\text{factors of}\ a_0}{\text{factors of}\ a_n})](https://tex.z-dn.net/?f=%3D%5Cpm%20%28%5Cdfrac%7B%5Ctext%7Bfactors%20of%7D%5C%20a_0%7D%7B%5Ctext%7Bfactors%20of%7D%5C%20a_n%7D%29)
The given polynomial is,
![f(x) = 9x^8 + 9x^6-12x + 7](https://tex.z-dn.net/?f=f%28x%29%20%3D%209x%5E8%20%2B%209x%5E6-12x%20%2B%207)
Here,
![a_n=9,\ a_0=7\\\\\text{factors of}\ 9=1,3,9\\\\\text{factors of}\ 7=1,7](https://tex.z-dn.net/?f=a_n%3D9%2C%5C%20a_0%3D7%5C%5C%5C%5C%5Ctext%7Bfactors%20of%7D%5C%209%3D1%2C3%2C9%5C%5C%5C%5C%5Ctext%7Bfactors%20of%7D%5C%207%3D1%2C7)
The potential rational roots are,
![=\pm \frac{1}{1},\pm \frac{1}{3}, \pm \frac{1}{9}, \pm \frac{7}{1}, \pm \frac{7}{3}, \pm \frac{7}{9}](https://tex.z-dn.net/?f=%3D%5Cpm%20%5Cfrac%7B1%7D%7B1%7D%2C%5Cpm%20%5Cfrac%7B1%7D%7B3%7D%2C%20%5Cpm%20%5Cfrac%7B1%7D%7B9%7D%2C%20%5Cpm%20%5Cfrac%7B7%7D%7B1%7D%2C%20%5Cpm%20%5Cfrac%7B7%7D%7B3%7D%2C%20%5Cpm%20%5Cfrac%7B7%7D%7B9%7D)
![=\pm 1,\pm \frac{1}{3}, \pm \frac{1}{9}, \pm 7, \pm \frac{7}{3}, \pm \frac{7}{9}](https://tex.z-dn.net/?f=%3D%5Cpm%201%2C%5Cpm%20%5Cfrac%7B1%7D%7B3%7D%2C%20%5Cpm%20%5Cfrac%7B1%7D%7B9%7D%2C%20%5Cpm%207%2C%20%5Cpm%20%5Cfrac%7B7%7D%7B3%7D%2C%20%5Cpm%20%5Cfrac%7B7%7D%7B9%7D)
From, the given options only
satisfies.
Answer: 9 inches
Explaination: The volume of a cylinder, V = (πr^2)H, so H = V/(πr^2).
Using the parameters you specified, H = 324π/[(π)(6^2)] = 324π/36π = 324/36 = 9 inches
Answer:using elimination to solve for x
9x +6y = 3*134 | Multiplying 1st equation by 3
-4x -6y = -2*146 | Multiplying 2nd equation by -2
5x = 3*134 - 2*146
5x = $110
x = $22, the cost of the youth ticket
Step-by-step explanation:This question Sets Up two equations with 2 unknowns
Let x and y represent the cost of the youth and adult ticket respectively
Question states***
3x + 2y = $134
2x + 3y = $146