The geometric mean of two numbers is the square root of their product.
sqrt{4 • 12}
sqrt{48}
sqrt{16} •sqrt{3}
4•sqrt{3}.
The geometric mean of 4 and 12 is
4•sqrt{3}.
Answer:
The answer would be 2nd top choice and 1st bottom choice
Step-by-step explanation:
Answer:
k(4) = 10
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
k(x) = 18 - 2x
k(4) is x = 4
<u>Step 2: Evaluate</u>
- Substitute in <em>x</em>: k(4) = 18 - 2(4)
- Multiply: k(4) = 18 - 8
- Subtract: k(4) = 10
The correct question is
<span>Given cos theta=4/9 and csc theta < 0 find sin theta and tan theta
</span>
we know that
csc theta=1/sin theta
if csc theta < 0
then
sin theta < 0
we have that
<span>cos theta=4/9
we know that
sin</span>² theta+cos² theta=1
so
sin² theta=1-cos² theta-----> 1-(4/9)²----> 1-(16/81)----> 65/81
sin theta=-√(65/81)---->-√65/9
the answer Part a) is
sin theta=-√65/9
Part b) find tan theta
tan theta=sin theta/cos theta
tan theta=(-√65/9)/(4/9)-----> tan theta=-√65/4
the answer part b) is
tan theta=-√65/4
Answer:
not equal no property shown