1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11Alexandr11 [23.1K]
3 years ago
13

1. Find the critical points of the function. Then use the Second Derivative Test to determine whether they are local minima, loc

al maxima, or saddle points (or state that the test fails.) (Order your answers from smallest to largest x, then from smallest to largest y.)f(x, y) = 36x − 12x3 − 6xy22. Find the critical points of the function. Then use the Second Derivative Test to determine whether they are local minima, local maxima, or saddle points (or state that the test fails.) (Order your answers from smallest to largest x, then from smallest to largest y.)f(x, y) = x3 + 6xy − 6y2 − 6x
Mathematics
1 answer:
Nesterboy [21]3 years ago
7 0

Answer:

1. the critical point are at x=0 and y=2.45, and the critical points occur at the saddle points.

2. the critical point are at x=2 and y=1, and the critical points occur at the saddle points.

Step-by-step explanation:

<u>1. </u>

let  t= F(x,y)

Given, t= F(x,y)= 36x - 12x³ -6xy²

(1) determine \frac{dt}{dx} \\

and  \frac{dt}{dy} \\.

therefore, \frac{dt}{dx} \\ = 36-36x² -6y²     ...................................eqn1

\frac{dt}{dy} \\ = -12xy                                 .....................................eqn2

(2) for stationary points,

for eqn1, 36-36x² -6y² = 0

36x² + 6y² = 36

6x² + y² = 6

y= \sqrt{6-6x^{2} }               ...................................eqn3                

then, substitute y in eqn2

then for, -12xy = 0

-12x\sqrt{6-6x^{2} } = 0

solving this, give x=0                      ...................................eqn4

substitute eqn 4 in eqn3, gives

y= \sqrt{6}

y= 2.45

(3) therefore, for eqn 1 and 2, the stationary points occur at x=0 and y=2.45.

(4)determine  \frac{d²t}{dx²} \\

since, \frac{dt}{dx} \\ = 36-36x² -6y²    

\frac{d²t}{dx²} \\ = 36x                                  ...................................eqn5

(5)determine  \frac{d²t}{dy²} \\

since,  \frac{dt}{dy} \\ = -12xy

then \frac{d²t}{dy²} \\ = -12x                       ...................................eqn6      

(6)determine  \frac{d²t}{dxdy} \\ =  \frac{d}{dx} \\.\frac{dt}{dy} \\

= d/dx (-12xy) = -12y                                            ...................................eqn7

substitute values of x and y (0, 2.45) in eqn 5,6,7

eqn 5 =0

eqn 6 =0

also,

eqn7 =-29.4

also for, sqr eqn7 = (-12y)² = 144y² = 864.4

(7) finally, determine whether it is maxima, minima or saddle point by:

Δ=  (\frac{d²t}{dxdy} \\)² - [\frac{d²t}{dy²} \\ * \frac{d²t}{dx²} \\]

for (x=0, y=2.45)

Δ = 864.4 - {(0)(0)} = 864.4

since, Δ > 0, therefore the stationary points (0,2.45) is a saddle point.

<u>2. </u>

let  t= F(x,y)

Given, t= F(x,y)= x³ + 6xy - 6y² - 6x

(1) determine \frac{dt}{dx} \\  

and  \frac{dt}{dy} \\.

therefore, \frac{dt}{dx} \\ = 3x² -6y-6     ...................................eqn1

\frac{dt}{dy} \\ = 6x - 12y                        .....................................eqn2

(2) for stationary points,

for eqn1, 3x² -6y-6 = 0

x² -2y -2 = 0

x²  =2+2y

x =sqrt(2+2y)                                                                            ...................eqn3                

then, substitute x in eqn2

then for, 6x - 12y= 0

-6(sqrt(2+2y) - 12y= 0

solving this, give y= 1 and -0.5                      ...................................eqn4

substitute eqn 4 in eqn3, gives

x = 2 and 1

(3) therefore, for eqn 1 and 2, the stationary points occur at x=2, y=1 and x=1, y=-0.5.

thus, the stationary points occur at (2,1) and (1, -0.5)

(4)determine  \frac{d²t}{dx²} \\

since, \frac{dt}{dx} \\ = 3x² -6y-6    

\frac{d²t}{dx²} \\ = 6x                                ...................................eqn5

(5)determine  \frac{d²t}{dy²} \\

since,  \frac{dt}{dy} \\ = 6x - 12y

then \frac{d²t}{dy²} \\ = -12y                      ...................................eqn6      

(6)determine  \frac{d²t}{dxdy} \\ =  \frac{d}{dx} \\.\frac{dt}{dy} \\

= d/dx (6x - 12y) = 6                                            ...................................eqn7

substitute values of x and y as (2,1) and (1, -0.5) in eqn 5,6,7

at (2,1) eqn 5 =12, eqn 6 =-12 also, eqn7 =6

at (1,-0.5) eqn 5 =6, eqn 6 =6 also, eqn7 =6

also for, sqr eqn7 = (6)² = 36

(7) finally, determine whether it is maxima, minima or saddle point by:

Δ=  (\frac{d²t}{dxdy} \\)² - [[\frac{d²t}{dy²}* \frac{d²t}{dx²} \\]

for (x=2, y=1)

Δ = 36 - {(12)(-12)} = 36+144 = 180

for (x=1, y=-0.5)

Δ = 36 - {(6)(6)} = 36-36 = 0

since, Δ > 0, for (2,1) therefore the stationary points (2,1) is a saddle point.

You might be interested in
For what values of x will this function be defined?
Citrus2011 [14]

Answer:

U have to put up the graph or something so i can answer your question.  thank you!

Step-by-step explanation:

5 0
2 years ago
4. What is the rule of the nth term of the geometric sequence with <img src="https://tex.z-dn.net/?f=a_%7B4%7D" id="TexFormula1"
hram777 [196]

Answer:

\text{d.}\quad a_n=-2.25(2)^{n-1}

Step-by-step explanation:

The common ratio is given as 2, so the base of any exponential must be 2 (not -2 or 2.25). The 4th term is negative, so the initial value must be negative (since the multiplying factor is positive). The only selection matching these requirements is d.

You know the general term is ...

... an = a1·r^(n-1)

so the 4th term is

... -18 = a1·2^(4-1) = 8·a1

Then the first term is ...

... a1 = -18/8 = -2.25 . . . . . confirms our choice of answer d.

7 0
3 years ago
In 2000 there were approximately 27 million people 18-24 years old in the United States.
Semmy [17]
I don’t know why I never think there’s that many people
5 0
3 years ago
Please help!!! Look at picture
Vanyuwa [196]

Answer: 1: Given

2: Distribution

3: Subtraction

4: subtraction

5:division

Step-by-step explanation:

6 0
3 years ago
What is the simplified form of 3 over x squared all over 1 over x-cubed ?
Ainat [17]
5 I think I am a 5 th
8 0
3 years ago
Read 2 more answers
Other questions:
  • You purchased $132.49 worth of wheels and bearings for your skateboards. The ship charges $15 per skateboard to install them the
    8·1 answer
  • Please help to identify these equations. thank you, much appreciated!! ​
    15·1 answer
  • Please can someone help me:<br><br> Increase £40 by 10%<br><br> Thank you
    11·1 answer
  • Can anyone explain how to find the square root of fractions? For example, √(5/6)^2<br> ​
    13·1 answer
  • Find the unknown value<br><br>no link​
    5·1 answer
  • How many odd numbers are between 10 and 50?
    12·2 answers
  • "The mean age of all students at the University has a 95% chance of falling between 21.3 and 24.6 years of age." This statement
    12·1 answer
  • Any one know this one maybe
    10·1 answer
  • SOMEONE PLZZZZ HELP THIS IS DUE SOON!!! :)
    6·1 answer
  • to test an​ individual's use of a certain​ mineral, a researcher injects a small amount of a radioactive form of that mineral in
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!