1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11Alexandr11 [23.1K]
3 years ago
13

1. Find the critical points of the function. Then use the Second Derivative Test to determine whether they are local minima, loc

al maxima, or saddle points (or state that the test fails.) (Order your answers from smallest to largest x, then from smallest to largest y.)f(x, y) = 36x − 12x3 − 6xy22. Find the critical points of the function. Then use the Second Derivative Test to determine whether they are local minima, local maxima, or saddle points (or state that the test fails.) (Order your answers from smallest to largest x, then from smallest to largest y.)f(x, y) = x3 + 6xy − 6y2 − 6x
Mathematics
1 answer:
Nesterboy [21]3 years ago
7 0

Answer:

1. the critical point are at x=0 and y=2.45, and the critical points occur at the saddle points.

2. the critical point are at x=2 and y=1, and the critical points occur at the saddle points.

Step-by-step explanation:

<u>1. </u>

let  t= F(x,y)

Given, t= F(x,y)= 36x - 12x³ -6xy²

(1) determine \frac{dt}{dx} \\

and  \frac{dt}{dy} \\.

therefore, \frac{dt}{dx} \\ = 36-36x² -6y²     ...................................eqn1

\frac{dt}{dy} \\ = -12xy                                 .....................................eqn2

(2) for stationary points,

for eqn1, 36-36x² -6y² = 0

36x² + 6y² = 36

6x² + y² = 6

y= \sqrt{6-6x^{2} }               ...................................eqn3                

then, substitute y in eqn2

then for, -12xy = 0

-12x\sqrt{6-6x^{2} } = 0

solving this, give x=0                      ...................................eqn4

substitute eqn 4 in eqn3, gives

y= \sqrt{6}

y= 2.45

(3) therefore, for eqn 1 and 2, the stationary points occur at x=0 and y=2.45.

(4)determine  \frac{d²t}{dx²} \\

since, \frac{dt}{dx} \\ = 36-36x² -6y²    

\frac{d²t}{dx²} \\ = 36x                                  ...................................eqn5

(5)determine  \frac{d²t}{dy²} \\

since,  \frac{dt}{dy} \\ = -12xy

then \frac{d²t}{dy²} \\ = -12x                       ...................................eqn6      

(6)determine  \frac{d²t}{dxdy} \\ =  \frac{d}{dx} \\.\frac{dt}{dy} \\

= d/dx (-12xy) = -12y                                            ...................................eqn7

substitute values of x and y (0, 2.45) in eqn 5,6,7

eqn 5 =0

eqn 6 =0

also,

eqn7 =-29.4

also for, sqr eqn7 = (-12y)² = 144y² = 864.4

(7) finally, determine whether it is maxima, minima or saddle point by:

Δ=  (\frac{d²t}{dxdy} \\)² - [\frac{d²t}{dy²} \\ * \frac{d²t}{dx²} \\]

for (x=0, y=2.45)

Δ = 864.4 - {(0)(0)} = 864.4

since, Δ > 0, therefore the stationary points (0,2.45) is a saddle point.

<u>2. </u>

let  t= F(x,y)

Given, t= F(x,y)= x³ + 6xy - 6y² - 6x

(1) determine \frac{dt}{dx} \\  

and  \frac{dt}{dy} \\.

therefore, \frac{dt}{dx} \\ = 3x² -6y-6     ...................................eqn1

\frac{dt}{dy} \\ = 6x - 12y                        .....................................eqn2

(2) for stationary points,

for eqn1, 3x² -6y-6 = 0

x² -2y -2 = 0

x²  =2+2y

x =sqrt(2+2y)                                                                            ...................eqn3                

then, substitute x in eqn2

then for, 6x - 12y= 0

-6(sqrt(2+2y) - 12y= 0

solving this, give y= 1 and -0.5                      ...................................eqn4

substitute eqn 4 in eqn3, gives

x = 2 and 1

(3) therefore, for eqn 1 and 2, the stationary points occur at x=2, y=1 and x=1, y=-0.5.

thus, the stationary points occur at (2,1) and (1, -0.5)

(4)determine  \frac{d²t}{dx²} \\

since, \frac{dt}{dx} \\ = 3x² -6y-6    

\frac{d²t}{dx²} \\ = 6x                                ...................................eqn5

(5)determine  \frac{d²t}{dy²} \\

since,  \frac{dt}{dy} \\ = 6x - 12y

then \frac{d²t}{dy²} \\ = -12y                      ...................................eqn6      

(6)determine  \frac{d²t}{dxdy} \\ =  \frac{d}{dx} \\.\frac{dt}{dy} \\

= d/dx (6x - 12y) = 6                                            ...................................eqn7

substitute values of x and y as (2,1) and (1, -0.5) in eqn 5,6,7

at (2,1) eqn 5 =12, eqn 6 =-12 also, eqn7 =6

at (1,-0.5) eqn 5 =6, eqn 6 =6 also, eqn7 =6

also for, sqr eqn7 = (6)² = 36

(7) finally, determine whether it is maxima, minima or saddle point by:

Δ=  (\frac{d²t}{dxdy} \\)² - [[\frac{d²t}{dy²}* \frac{d²t}{dx²} \\]

for (x=2, y=1)

Δ = 36 - {(12)(-12)} = 36+144 = 180

for (x=1, y=-0.5)

Δ = 36 - {(6)(6)} = 36-36 = 0

since, Δ > 0, for (2,1) therefore the stationary points (2,1) is a saddle point.

You might be interested in
Negative numbers are __________ whole numbers.<br> A) Always<br> B) Sometimes<br> C) Never
Alchen [17]

Answer:

Step-by-step explanation:

Sometimes

8 0
3 years ago
Read 2 more answers
I WILL MARK BRAINLIEST!
miv72 [106K]
The answer is the third one 
-the hours are unknown so its 6+4h
the total is 130 and she earns an extra 20 dollars so
(6+4)h+20=130
5 0
4 years ago
Read 2 more answers
Mrs. Mitchell decided to grade her projects by giving each student 50 points if they turned in a project and then an additional
Virty [35]

A is the answer the slope


7 0
3 years ago
Read 2 more answers
Find the radius of the circle whose equation is 3x² + 3y² = 75.
Flauer [41]

Answer:

<h2>A) 5</h2>

Step-by-step explanation:

The equation of a circle:

(x-h)^2+(y-k)^2=r^2

(h, k) - center

r - radius

We have the equation:

3x^2+3y^2=75             <em>divide both sides by 3</em>

x^2+y^2=25\to r^2=25\to r=\sqrt{25}\to r=5

7 0
3 years ago
How do you do n2-14+48
Arturiano [62]
N² - 14 + 48
n² + (-14 + 48)
n² + 28

4 0
3 years ago
Other questions:
  • Solve:<br><br> ln(1 - 2x) = ln(2 - x)
    11·1 answer
  • Describe a real life situation in which you need to know the slope.
    8·1 answer
  • At noon, Manny's Café had 12 banana muffins, 10 chocolate muffins, 6 blueberry muffins, and 7 vanilla muffins. What is the proba
    5·2 answers
  • Determine whether the
    14·1 answer
  • How many time does 14 go into 33<br> sorry i was sleeping-----
    11·2 answers
  • Which of the following best describes a simple random sample?
    13·1 answer
  • In The figure below ABCD is a square points are chosen on each pair of the adjacent sides of ABCD to form four congruent and rig
    6·2 answers
  • It t takes a snail 10 seconds to move 1 centimeter.
    10·2 answers
  • What is the answer to the question
    15·1 answer
  • Factor 1/7 out of 1/7x-2/7
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!