1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11Alexandr11 [23.1K]
3 years ago
13

1. Find the critical points of the function. Then use the Second Derivative Test to determine whether they are local minima, loc

al maxima, or saddle points (or state that the test fails.) (Order your answers from smallest to largest x, then from smallest to largest y.)f(x, y) = 36x − 12x3 − 6xy22. Find the critical points of the function. Then use the Second Derivative Test to determine whether they are local minima, local maxima, or saddle points (or state that the test fails.) (Order your answers from smallest to largest x, then from smallest to largest y.)f(x, y) = x3 + 6xy − 6y2 − 6x
Mathematics
1 answer:
Nesterboy [21]3 years ago
7 0

Answer:

1. the critical point are at x=0 and y=2.45, and the critical points occur at the saddle points.

2. the critical point are at x=2 and y=1, and the critical points occur at the saddle points.

Step-by-step explanation:

<u>1. </u>

let  t= F(x,y)

Given, t= F(x,y)= 36x - 12x³ -6xy²

(1) determine \frac{dt}{dx} \\

and  \frac{dt}{dy} \\.

therefore, \frac{dt}{dx} \\ = 36-36x² -6y²     ...................................eqn1

\frac{dt}{dy} \\ = -12xy                                 .....................................eqn2

(2) for stationary points,

for eqn1, 36-36x² -6y² = 0

36x² + 6y² = 36

6x² + y² = 6

y= \sqrt{6-6x^{2} }               ...................................eqn3                

then, substitute y in eqn2

then for, -12xy = 0

-12x\sqrt{6-6x^{2} } = 0

solving this, give x=0                      ...................................eqn4

substitute eqn 4 in eqn3, gives

y= \sqrt{6}

y= 2.45

(3) therefore, for eqn 1 and 2, the stationary points occur at x=0 and y=2.45.

(4)determine  \frac{d²t}{dx²} \\

since, \frac{dt}{dx} \\ = 36-36x² -6y²    

\frac{d²t}{dx²} \\ = 36x                                  ...................................eqn5

(5)determine  \frac{d²t}{dy²} \\

since,  \frac{dt}{dy} \\ = -12xy

then \frac{d²t}{dy²} \\ = -12x                       ...................................eqn6      

(6)determine  \frac{d²t}{dxdy} \\ =  \frac{d}{dx} \\.\frac{dt}{dy} \\

= d/dx (-12xy) = -12y                                            ...................................eqn7

substitute values of x and y (0, 2.45) in eqn 5,6,7

eqn 5 =0

eqn 6 =0

also,

eqn7 =-29.4

also for, sqr eqn7 = (-12y)² = 144y² = 864.4

(7) finally, determine whether it is maxima, minima or saddle point by:

Δ=  (\frac{d²t}{dxdy} \\)² - [\frac{d²t}{dy²} \\ * \frac{d²t}{dx²} \\]

for (x=0, y=2.45)

Δ = 864.4 - {(0)(0)} = 864.4

since, Δ > 0, therefore the stationary points (0,2.45) is a saddle point.

<u>2. </u>

let  t= F(x,y)

Given, t= F(x,y)= x³ + 6xy - 6y² - 6x

(1) determine \frac{dt}{dx} \\  

and  \frac{dt}{dy} \\.

therefore, \frac{dt}{dx} \\ = 3x² -6y-6     ...................................eqn1

\frac{dt}{dy} \\ = 6x - 12y                        .....................................eqn2

(2) for stationary points,

for eqn1, 3x² -6y-6 = 0

x² -2y -2 = 0

x²  =2+2y

x =sqrt(2+2y)                                                                            ...................eqn3                

then, substitute x in eqn2

then for, 6x - 12y= 0

-6(sqrt(2+2y) - 12y= 0

solving this, give y= 1 and -0.5                      ...................................eqn4

substitute eqn 4 in eqn3, gives

x = 2 and 1

(3) therefore, for eqn 1 and 2, the stationary points occur at x=2, y=1 and x=1, y=-0.5.

thus, the stationary points occur at (2,1) and (1, -0.5)

(4)determine  \frac{d²t}{dx²} \\

since, \frac{dt}{dx} \\ = 3x² -6y-6    

\frac{d²t}{dx²} \\ = 6x                                ...................................eqn5

(5)determine  \frac{d²t}{dy²} \\

since,  \frac{dt}{dy} \\ = 6x - 12y

then \frac{d²t}{dy²} \\ = -12y                      ...................................eqn6      

(6)determine  \frac{d²t}{dxdy} \\ =  \frac{d}{dx} \\.\frac{dt}{dy} \\

= d/dx (6x - 12y) = 6                                            ...................................eqn7

substitute values of x and y as (2,1) and (1, -0.5) in eqn 5,6,7

at (2,1) eqn 5 =12, eqn 6 =-12 also, eqn7 =6

at (1,-0.5) eqn 5 =6, eqn 6 =6 also, eqn7 =6

also for, sqr eqn7 = (6)² = 36

(7) finally, determine whether it is maxima, minima or saddle point by:

Δ=  (\frac{d²t}{dxdy} \\)² - [[\frac{d²t}{dy²}* \frac{d²t}{dx²} \\]

for (x=2, y=1)

Δ = 36 - {(12)(-12)} = 36+144 = 180

for (x=1, y=-0.5)

Δ = 36 - {(6)(6)} = 36-36 = 0

since, Δ > 0, for (2,1) therefore the stationary points (2,1) is a saddle point.

You might be interested in
True or False:
Lostsunrise [7]
The answer is true to all of them.
8 0
3 years ago
Read 2 more answers
Vanessa deposited money into a bank account that earned 1.25% simple interest each year. After 12 year, she had earned $5.00 in
svetlana [45]

Answer: 800$ is the answer.

multiply to by both sides, remove 1/2.

Have a blessed day.

6 0
2 years ago
Length of a rectangular prism volume is 2,830.5, width 18.5, height 9
jek_recluse [69]
Well, you get the volume by multiplying the height, the width, and the length. So just work on it backwards.
2,830.5 divided by (9 times 18.5).
9 times 18.5 is 166.5. So that leaves us with 2,830.5 divided by 166.5, which is 17.
So, the answer is 17.
4 0
3 years ago
Read 2 more answers
Please select the best answer and click submit Solve kx-4=9 for x
shepuryov [24]

Answer:

Option B. x = \frac{13}{k}.

Step-by-step explanation:

The given equation is kx - 4 = 9

We will add 4 on both the sides of the equation

kx - 4 +4 = 9 +4

kx = 13

Now we will divide by k on both the sides of the equation

\frac{1}{k}(13x) = \frac{1}{k}13

x = \frac{13}{k}

Therefore Option B x = 13/k is the right answer.

6 0
3 years ago
Read 2 more answers
V=pir^2h solve this equation for h
Nady [450]
Since we are solving for h, the equation:

V = πr²h

...divides πr² to the other side. Thus, it becomes....

\frac{V}{ \pi r^2} = h

Which can be rewritten as....

h = \frac{V}{ \pi r^2}
3 0
3 years ago
Read 2 more answers
Other questions:
  • How do i solve x^2-11x+14=0 using the quadratic formula
    14·2 answers
  • In which figure is point G an orthocenter?
    15·2 answers
  • 46 = -6t - 8 what is t
    8·1 answer
  • <img src="https://tex.z-dn.net/?f=%20%5Cint%5Climits%20%7B3%20%5E%7B%20%5Cfrac%7Bx%7D%7B2%7D%20%7D%20%7D%20%5C%2C%20dx%20" id="T
    9·2 answers
  • What is the solution? x^2 + 7x – 18 = 0
    15·2 answers
  • Which set of side lengths form a right triangle?
    14·2 answers
  • At the grand opening, every 8th customer received a free coffee mug, and every 12th customer received a free baseball cap. How m
    15·1 answer
  • What is the area of 14 qnd 11
    10·1 answer
  • What is the length of side s of the square shown below?
    9·1 answer
  • The graph of f(x) = x^2 was transformed to create a graph g(x) =f(x)−3.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!