1st Avenue would be more difficult because it’s rise and run is for every one foot forward it is 3 feet up. Meanwhile avenue 16th would start at (3,1) and the rise and run would be for every 3 feet it would go up 1 foot.
Answer:
0.0143
Step-by-step explanation:
In this question, we are asked to use the binomial distribution to calculate the probability that 10 or fewer passengers from a sample of MIT data project sample were on American airline flights.
We proceed as follows;
The probability that a passenger was an American flight is 15.5%= 15.55/100 = 0.155
Let’s call this probability p
The probability that he/she isn’t on the flight, let’s call this q
q =1 - p= 0.845
Sample size, n = 155
P(X < A) = P(Z < (A - mean)/standard deviation)
Mean = np
= 125 x 0.155
= 19.375
Standard deviation = √npq
= √ (125 x 0.155x 0.845)
= 4.0462
P(10 or fewer passengers were on American Airline flights) = P(X \leq 10)
= P(Z < (10.5 - 19.375)/4.0462)
= P(Z < -2.19)
= 0.0143
Answer:
False
Step-by-step explanation:
y = -3× - 2
4 = -3(2) - 2
4 = -6 - 2
4 = -8
Answer:
D. y = 4x - 6
Step-by-step explanation:
The equation that is perpendicular to the line MN should have a slope that when multiplied by the slope of line MN will result to negative one. Therefore,
Therefore,
m₁ × m₂ = -1
Using the 2 coordinates of MN let's find the slope,
(-7, 6)(5, 3)
Therefore,
m₁ = 3 - 6 / 5 - (-7) = -3 / 12 = - 1 / 4
The equation that represent a line perpendicular to the line MN is
y = 4x - 6 because the slope slope(m₂) is 4.
From our formula,
4 × - 1 / 4 = - 1
So, option D meets the requirement.
y - y1 = m(x - x1)
Plug in:
Slope = m = 4
Point = (x1,y1) ----> (-3,7)
y - 7 = 4(x - -3) //Solve for y
y - 7 = 4(x + 3) //Answer
y - 7 = 4x + 12
y = 4x + 12 + 7
y = 4x + 19
Answer: B
//Hope it helps