The answer is -11/7 as a mixed number it is( -1 4/7)
Answer:

Step-by-step explanation:
If
, then
. It follows that
![\begin{aligned} \\\frac{g(x+h)-g(x)}{h} &= \frac{1}{h} \cdot [g(x+h) - g(x)] \\&= \frac{1}{h} \left( \frac{1}{x+h} - \frac{1}{x} \right)\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%20%5C%5C%5Cfrac%7Bg%28x%2Bh%29-g%28x%29%7D%7Bh%7D%20%26%3D%20%5Cfrac%7B1%7D%7Bh%7D%20%5Ccdot%20%5Bg%28x%2Bh%29%20-%20g%28x%29%5D%20%5C%5C%26%3D%20%5Cfrac%7B1%7D%7Bh%7D%20%5Cleft%28%20%5Cfrac%7B1%7D%7Bx%2Bh%7D%20-%20%5Cfrac%7B1%7D%7Bx%7D%20%5Cright%29%5Cend%7Baligned%7D)
Technically we are done, but some more simplification can be made. We can get a common denominator between 1/(x+h) and 1/x.

Now we can cancel the h in the numerator and denominator under the assumption that h is not 0.

Answer:
9
Step-by-step explanation:
10a+7
<u>10(1/5)</u> + 7
<u>2+7</u>
9
Answer:
a)
, b)
, c)
, d) 
Step-by-step explanation:
a) Let assume an initial mass m decaying at a constant rate k throughout time, the differential equation is:

b) The general solution is found after separating variables and integrating each sides:

Where
is the time constant and 
c) The time constant is:


The particular solution of the differential equation is:

d) The amount of radium after 300 years is:
