Answer:
Sum of cubes identity should be used to prove 35 =3+27
Step-by-step explanation:
Prove that : 35 = 8 +27
Polynomial identities are just equations that are true, but identities are particularly useful for showing the relationship between two apparently unrelated expressions.
Sum of the cubes identity:

Take RHS
8+ 27
We can write 8 as
and 27 as
.
then;
8+27 = 
Now, use the sum of cubes identity;
here a =2 and b = 3

or
= LHS proved!
therefore, the Sum of cubes polynomial identity should be used to prove that 35 = 8 +27
Answer:
2n^{2} +2n
INSERT
Step-by-step explanation:first you want to move the negative which is negative 1 into the set of parenthesis and then Foil the two parenthesis together and the combine like terms
Lookin for free points kinda like this one whatcha doin?
Answer:


Step-by-step explanation:
Given




Required
The number of each coin
The total coins can be represented as:


So, the worth of the coin is:

The equations to solve are:


Make d the subject in: 

Substitute
in 


Collect like terms


Solve for q


Substitute
in 


So:

