1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
german
3 years ago
15

Basic factoring. Please help!

Mathematics
2 answers:
exis [7]3 years ago
7 0

Answer:

3rd Option: -1(x + 15)

Step-by-step explanation:

When we factor our a negative 1, we take the opposite signs of what is given:

-1(x + 15)

To check, we simply just redistribute to check if it matches the original expression:

-x - 15

So the 3rd option is the correct choice.

GenaCL600 [577]3 years ago
6 0

Answer:

It's the third option (it's correct with you)

Step-by-step explanation:

- X - 15

So here we should the common factor between - x and - 15, where it is - 1 because both of these have minus in common.

Then the answer is:

-X - 15

= - 1 ( x + 15)

Hope this helps you..

Good Luck!

You might be interested in
I'm.not understanding this at all please help
alekssr [168]
Http://rss2search.com/nohost.php?url=www.edhelperblig.com/cgi-bin/socstud.cgi
6 0
3 years ago
HELP PLEASEE THIS IS MY LAST QUESTION ILL MARK BRAINLIEST
RoseWind [281]

Answer:

F. y = 9.5x + 22.5

Step-by-step explanation:

let the number of shirts be x

For every shirt he pays $9.50 and $22.5 is the additional price

8 0
3 years ago
Write an equation in point-slope form of the line through point J (4,1) with slope -4.
Marysya12 [62]

\bf J(\stackrel{x_1}{4}~,~\stackrel{y_1}{1})~\hspace{10em}slope = m\implies -4\\\\\\ \begin{array}{|c|ll}\cline{1-1}\textit{point-slope form}\\\cline{1-1}\\y-y_1=m(x-x_1)\\\\\cline{1-1}\end{array}\implies y-1=-4(x-4)

8 0
3 years ago
Help me on this please
zalisa [80]

Answer:

1. (x, y) → (x + 3, y - 2)

Vertices of the image

a) (-2, - 3)

b) (-2, 3)

c) (2, 2)

2. (x, y) → (x - 3, y + 5)

Vertices of the image

a) (-3, 2)

b) (0, 2)

c) (0, 4)

d) (2, 4)

3. (x, y) → (x + 4, y)

Vertices of the image

a) (-1, -2)

b) (1, -2)

c) (3, -2)

4. (x, y) → (x + 6, y + 1)

Vertices of the image

a) (1, -1)

b) (1, -2)

c) (2, -2)

d) (2, -4)

e) (3, -1)

f) (3, -3)

g) (4, -3)

h) (1, -4)

5. (x, y) → (x, y - 4)

Vertices of the image

a) (0, -2)

b) (0, -3)

c) (2, -2)

d) (2, -4)

6. (x, y) → (x - 1, y + 4)

Vertices of the image

a) (-5, 3)

b) (-5, -1)

c) (-3, 0)

d) (-3, -1)

Explanation:

To identify each <u><em>IMAGE</em></u> you should perform the following steps:

  • List the vertex points of the preimage (the original figure) as ordered pairs.
  • Apply the transformation rule to every point of the preimage
  • List the image of each vertex after applying each transformation, also as ordered pairs.

<u>1. (x, y) → (x + 3, y - 2)</u>

The rule means that every point of the preimage is translated three units to the right and 2 units down.

Vertices of the preimage      Vertices of the image

a) (-5,2)                                   (-5 + 3, -1 - 2) = (-2, - 3)

b) (-5, 5)                                  (-5 + 3, 5 - 2) = (-2, 3)

c) (-1, 4)                                   (-1 + 3, 4 - 2) = (2, 2)

<u>2. (x,y) → (x - 3, y + 5)</u>

The rule means that every point of the preimage is translated three units to the left and five units down.

Vertices of the preimage      Vertices of the image

a) (0, -3)                                   (0 - 3, -3 + 5) = (-3, 2)

b) (3, -3)                                   (3 - 3, -3  + 5) = (0, 2)

c) (3, -1)                                    (3 - 3, -1 + 5) = (0, 4)

d) (5, -1)                                    (5 - 3, -1 + 5) = (2, 4)

<u>3. (x, y) → (x + 4, y)</u>

The rule represents a translation 4 units to the right.

Vertices of the preimage   Vertices of the image

a) (-5, -2)                               (-5 + 4, -2) = (-1, -2)

b) (-3, -5)                               (-3 + 4, -2) = (1, -2)

c) (-1, -2)                                (-1 + 4, -2) = (3, -2)

<u>4. (x, y) → (x + 6, y + 1)</u>

Vertices of the preimage      Vertices of the image

a) (-5, -2)                                  (-5 + 6, -2 + 1) = (1, -1)

b) (-5, -3)                                  (-5 + 6, -3 + 1) = (1, -2)

c) (-4, -3)                                   (-4 + 6, -3 + 1) = (2, -2)

d) (-4, -5)                                  (-4 + 6, -5 + 1) = (2, -4)

e) (-3, -2)                                  (-3 + 6, -2 + 1) = (3, -1)

f) (-3, -4)                                   (-3 + 6, -4 + 1) = (3, -3)

g) (-2, -4)                                  (-2 + 6, -4 + 1) = (4, -3)

h) (-2, -5)                                  (-2 + 3, -5 + 1) = (1, -4)

<u>5. (x, y) → (x, y - 4)</u>

This is a translation four units down

Vertices of the preimage      Vertices of the image

a) (0, 2)                                    (0, 2 - 4) = (0, -2)

b) (0,1)                                      (0, 1 - 4) = (0, -3)

c) (2, 2)                                     (2, 2 - 4) = (2, -2)

d) (2,0)                                     (2, 0 - 4) = (2, -4)

<u>6. (x, y) → (x - 1, y + 4)</u>

This is a translation one unit to the left and four units up.

Vertices of the pre-image     Vertices of the image

a) (-4, -1)                                   (-4 - 1, -1 + 4) = (-5, 3)

b) (-4 - 5)                                  (-4 - 1, -5 + 4) = (-5, -1)

c) (-2, -4)                                  (- 2 - 1, -4 + 4) = (-3, 0)

d) (-2, -5)                                 (-2 - 1, -5 + 4) = (-3, -1)

8 0
3 years ago
The cargo carrying part of Billy‘s truck has a length of 8.3 m a width of 3 m and a height of 4.2 m. What is the maximum volume
madam [21]
You're really just finding the volume of the cargo-carry part.

V= L x W x H

V= 8.3m x 3m x 4.2m

V= 104.58 m3 or 105 m3 (rounded)

ANSWER: The maximum volume of sand Billy's truck can carry is about 105 m3.
8 0
3 years ago
Other questions:
  • DeWayne wants to find out what career his fellow middle school students would like to pursue. He plans to collect three samples.
    9·2 answers
  • Tell whether x and y show direct variation. Explain your reasoning. If so, find k. y+3=x+6
    8·1 answer
  • suppose you have 1000 gallons of gasoline 20% is premium and 80% is regular how much premium gas needs to be added to bring the
    5·1 answer
  • Olivia always charges the same rate for babysitting. On Saturday, she earned $30 in 5 hours. Represent the relationship as a tab
    5·1 answer
  • What is 6 to the power of -1 as a fraction?
    8·2 answers
  • Leo owns a hostel and counted the number of guests staying in each room. he then created both a histogram and a dot plot to disp
    12·2 answers
  • What is 9.35 in simplest form
    11·2 answers
  • What does 3(-1/4) equal
    8·2 answers
  • 44% of 231 is what?<br> this is percentage btw
    12·2 answers
  • Need help assap look at file attached
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!