The answer is B) 1/3.
There are 6 faces on a rectangular prism, each of which is a rectangle.
The area of the front and back is given by 25(8) = 200 sq. cm.
The area of the bottom and top is given by 25(4) = 100 sq. cm.
The area of the right and left is given by 4(8) = 32.
There are 2 faces out of 6 with an area that is not a multiple of 100; 2/6 = 1/3.
Answer:
Step-by-step explanation:
14/15 - 1/3
= 6/10
In simplest form
= 3/5
Answer:
see explanation
Step-by-step explanation:
Given
4
- 5a² + 1 = 0
Use the substitution u = a², then equation is
4u² - 5u + 1 = 0
Consider the product of the coefficient of the u² term and the constant term
product = 4 × 1 = 4 and sum = - 5
The factors are - 4 and - 1
Use these factors to split the u- term
4u² - 4u - u + 1 = 0 ( factor the first/second and third/fourth terms )
4u(u - 1) - 1(u - 1) = 0 ← factor out (u - 1) from each term
(u - 1)(4u - 1) = 0
Equate each factor to zero and solve for u
u - 1 = 0 ⇒ u = 1
4u - 1 = 0 ⇒ 4u = 1 ⇒ u = 
Convert u back into terms of a, that is
a² = 1 ⇒ a = ± 1
a² =
⇒ a = ± 
Solutions are a = ± 1 , a = ± 
Answer:
y=3
Step-by-step explanation:
4y-8+4=8
4y-4=8
4y-4+4=8+4
4y=12
4y/4=12/4
y=3
Answer:
The graph has a domain of all real numbers.
The graph has a y-intercept at
.
The graph has an x-intercept at
.
Step-by-step explanation:
Given: The graph is ![y=\sqrt[3]{x-1}+2](https://tex.z-dn.net/?f=y%3D%5Csqrt%5B3%5D%7Bx-1%7D%2B2)
The domain of a function is a set of input values for which the function is real and defined.
Thus, the graph has a domain of
.
To find the y-intercept: To find the y-intercept, substitute
in
.
![\begin{aligned}y &=\sqrt[3]{x-1}+2 \\&=\sqrt[3]{0-1}+2 \\&=-1+2 \\&=1\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7Dy%20%26%3D%5Csqrt%5B3%5D%7Bx-1%7D%2B2%20%5C%5C%26%3D%5Csqrt%5B3%5D%7B0-1%7D%2B2%20%5C%5C%26%3D-1%2B2%20%5C%5C%26%3D1%5Cend%7Baligned%7D)
Thus, the y-intercept is 
To find the x-intercept: To find the x-intercept, substitute
in
.
![\begin{aligned}y &=\sqrt[3]{x-1}+2 \\0 &=\sqrt[3]{x-1}+2 \\-2 &=\sqrt[3]{x-1} \\(-2)^{3} &=(\sqrt[3]{x-1})^{3} \\-8 &=x-1 \\-7 &=x\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7Dy%20%26%3D%5Csqrt%5B3%5D%7Bx-1%7D%2B2%20%5C%5C0%20%26%3D%5Csqrt%5B3%5D%7Bx-1%7D%2B2%20%5C%5C-2%20%26%3D%5Csqrt%5B3%5D%7Bx-1%7D%20%5C%5C%28-2%29%5E%7B3%7D%20%26%3D%28%5Csqrt%5B3%5D%7Bx-1%7D%29%5E%7B3%7D%20%5C%5C-8%20%26%3Dx-1%20%5C%5C-7%20%26%3Dx%5Cend%7Baligned%7D)
Thus, the x-intercept is 