Answer:
x-intercepts = 1,2, and 4, y-intercept = -8
Step-by-step explanation:
x^3 - 7x^2 - 14x - 8 in factored form is equal to (x-1)(x-2)(x-4).
Solving for x-intercepts:
- We are actually able to solve for all x-intercepts without the given factor. But since we are given one of the factors, our job becomes much easier.
- Using synthetic division, or long division, we factor out the x-intercept 4. Which leaves us with the polynomial x^2 - 3x + 2.
- From here we can separate the polynomial into two binomials.
- x^2 - 3x + 2 = (x-1)(x-2). Giving us all 3 x-intercepts.
- Using Descartes' rules we can identify before even starting the problem how many real x-intercepts there are (Not needed for this problem).
Solving for y-intercept:
- The y-intercept is always the coefficient that does not have any assigned x-variables.
- The coefficient is -8, thus the y-intercept.
- If unsure of the y-intercept, you can always plug in x = 0. Solving for the y-intercept will give you the value of f(0).
- If there is no coefficient, the y-intercept is equal to zero.
Answer:
.25881
Step-by-step explanation:
sin15
=sin(45-30)
=sin45.cos30-cos45.sin30
=(0.707×0.86)-(0.707×0.5)
=(0.6082)-(0.3535)
=0.25
Answer:
C) 78
Step-by-step explanation:
its technically 77.5714... but rounds to 78, hope that helps
Hello!
To find our answer, we just multiply by 2.
2,134(2)=4,268
Therefore, there would be $4,268.
I hope this helps!
Answer:
You must survey 784 air passengers.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
The margin of error is:

95% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
Assume that nothing is known about the percentage of passengers who prefer aisle seats.
This means that
, which is when the largest sample size will be needed.
Within 3.5 percentage points of the true population percentage.
We have to find n for which M = 0.035. So






You must survey 784 air passengers.