1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tasya [4]
3 years ago
13

What force must the deltoid muscle provide to keep the arm in this position?

Physics
1 answer:
ruslelena [56]3 years ago
7 0

Answer:

Deltoid Force, F_{d} = \frac {r_{a}mgsin\alpha_{a}}{r_{d}sin\alpha_{d}}

Additional Information:

Some numerical information are missing from the question. However, I will derive the formula to calculate the force of the deltoid muscle. All you need to do is insert the necessary information and calculate.  

Explanation:

The deltoid muscle is the one keeping the hand arm in position. We have two torques that apply to the rotating of the arm.

1. The torque about the point in the shoulder for the deltoid muscle, T_{Deltoid}

2. The torque of the arm, T_{arm}  

Assuming the arm is just being stretched and there is no rotation going on,

                        T_{Deltoid} = 0

                       T_{arm} = 0

       ⇒           T_{Deltoid} = T_{arm}

                  r_{d}F_{d}sin\alpha_{d} = r_{a}F_{a}sin\alpha_{a}

Where,

r_{d} is radius of the deltoid

F_{d} is the force of the deltiod

\alpha_{d} is the angle of the deltiod

r_{a} is the radius of the arm

F_{a} is the force of the arm , F_{a} = mg  which is the mass of the arm and acceleration due to gravity

\alpha_{a} is the angle of the arm

The force of the deltoid muscle is,

                                 F_{d} = \frac {r_{a}F_{a}sin\alpha_{a}}{r_{d}sin\alpha_{d}}

but F_{a} = mg ,

                ∴            F_{d} = \frac {r_{a}mgsin\alpha_{a}}{r_{d}sin\alpha_{d}}

You might be interested in
What is the energy of a rock with a mass of 10.2 kg on a cliff that is 300 m height?
Anuta_ua [19.1K]

The potential energy of the rock is 30,000 J

Explanation:

The mechanical energy of an object is equal to the sum of its gravitational potential energy (PE) and its kinetic energy (KE):

E=PE+KE

where

PE is the gravitational potential energy, which is the energy possessed by the object due to its position in the gravitational field

KE is the kinetic energy, which is the energy possessed by the object due to its motion

In this problem, the rock is at rest, so its kinetic energy is zero:

KE = 0

Therefore, the energy of the rock is just equal to its potential energy, which is:

E=PE=mgh

where

m = 10.2 kg is the mass of the rock

g=9.8 m/s^2 is the acceleration of gravity

h = 300 m is the height of the rock above the ground

Substituting and solving, we find

PE=(10.2)(9.8)(300)=30,000 J

Learn more about potential energy:

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

4 0
3 years ago
Julie is cycling at a speed of 3.4 meters/second. If the combined mass of the bicycle and Julie is 30 kilograms, what is the kin
nexus9112 [7]

Answer:

A

Explanation:

KE = 1/2 mv^2

=1/2(30kg)( 3.4 m/s)^2

=173.4 joules

=1.7×10^2 joules

6 0
3 years ago
Where can classic examples of shield volcanoes be found?
Darina [25.2K]
The largest is Mauna Loa on the Big Island of Hawaii; all the volcanoes in the Hawaiian Islands are shield volcanoes. There are also shield volcanoes, for example, in Washington, Oregon, and the Galapagos Islands
4 0
3 years ago
The maximum speed limit on interstate 10 is 75 miles per hour. how many meters per second is this
Dvinal [7]

Answer:

<h2>33.53m/s</h2>

Explanation:

Given the maximum speed limit on interstate 10 as 75 miles per hour, to get the speed in meter per seconds, we need to convert the given speed to meter per seconds.

Using the conversion 1 mile = 1609.34m and 1 hour = 3600 seconds

75 miles perhour = 75miles/1 hour

75miles/1 hour (in m/s) = 75miles*1609.34m* 1 hour/1mile * 1 hour * 3600s *

= 75 *1609.34m* 1 /1 * 1 * 3600s

= 120,700.5m/3600s

= 33.53m/s

<em>Hence the maximum speed limit on interstate 10 in metre per seconds is 33.53m/s</em>

8 0
3 years ago
A ball having a mass of 200 g is released from rest at a height of 400 mm above a very large fixed metal surface. If the ball re
AysviL [449]

Answer:

0.9

Explanation:

h = 400 mm, h' = 325 mm

Let the coefficient of restitution be e.

h' = e^2 x h

325 = e^2 x 400

e^2 = 0.8125

e = 0.9

5 0
4 years ago
Other questions:
  • The unit of length most suitable for measuring the thickness of a cell phone is a
    7·1 answer
  • One degree Celsius indicates the same temperature change as?
    13·1 answer
  • What happens when heat from inside Earth is transferred to its surface? A:Warmer material is pushed to the crust B:More dense ma
    9·2 answers
  • Red, yellow, and blue are
    7·2 answers
  • Who was the first who traveled to the moon?​
    8·2 answers
  • I am detained how will i be able to get out?
    13·1 answer
  • Help me plzzzzzzzz with this
    6·1 answer
  • Show that the acceleration of any object down an incline where friction behaves simply (that is, where fk=μkN ) is a=g(sinθ−μkco
    12·1 answer
  • Flywheels are large, massive wheels used to store energy. They can be spun up slowly, then the wheel's energy can be released qu
    8·1 answer
  • Calculate the work done by a 4.2 N force pushing a 450. g sandwich across a table 0.8 m wide.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!