1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
seraphim [82]
3 years ago
8

A satellite orbits the earth a distance of 2.50 × 10^7 m above the planet’s surface and takes 6.43 hours for each revolution abo

ut the earth. The earth’s radius is 6.38 × 10^6 m.
The acceleration of this satellite is closest to _____.

Physics
1 answer:
ASHA 777 [7]3 years ago
7 0

Answer:

2.30 m /sec2

Explanation:

See the attached file;

You might be interested in
a solid metal sphere of radius 3.00m carries a total charge of -5.50. what is the magnitude of the electric field at a distance
aivan3 [116]

Answer:

(a) Electric field at 0.250 m is zero.

(b)  Electric field at 2.90 m is zero.

(c) Electric field at 3.10 m is - 5.15 x 10³ V/m.

(d) Electric field at 8.00 m is - 0.77 x 10³ V/m.

Explanation:

Let Q and R are the charge and radius of the solid metal sphere. The solid metal sphere behave as conductor, so total charge Q is on the surface of the sphere.

Electric field inside and outside the metal sphere is :

E = 0 for r ≤ R ( inside )

  = \frac{KQ}{r^{2} } for r > R ( outside )

Here K is electric constant and r is the distance from the center of the metal sphere.

(a) Electric field at 0.250 m is zero as r < R i.e. 0.250 m < 3 m from the above equation.

(b)  Electric field at 2.90 m is zero as r < R i.e. 2.90 m < 3 m from the above equation.

(c) Electric field at 3.10 m is given by the relation as r > R :

E = \frac{KQ}{r^{2} }

Substitute 9 x 10⁹ N m²/C² for K, -5.50 μC for Q and 3.10 m for r in the above equation.

E = - \frac{9\times10^{9}\times5.50\times10^{-6}  }{3.10^{2} }

E = - 5.15 x 10³ V/m

(d) Electric field at 8.00 m is given by the relation as r > R :

E = \frac{KQ}{r^{2} }

Substitute 9 x 10⁹ N m²/C² for K, -5.50 μC for Q and 8.00 m for r in the above equation.

E = - \frac{9\times10^{9}\times5.50\times10^{-6}  }{8^{2} }

E = - 0.77 x 10³ V/m

8 0
3 years ago
Dense water near the poles sinks, creating a current towards the equator. What would you expect to happen to this current if tem
Rudik [331]
It's not c or d :/!!!!!
3 0
3 years ago
Which conditions must be met in order for work to be done?​
Anettt [7]

Answer:

u wanna do my edge bro the answer is b

Explanation:

3 0
3 years ago
The six statements below represent Newton's three laws of motion and Kepler's three laws of planetary motion. Match each stateme
mote1985 [20]

Answer:

1. Force = mass x acceleration - Newton

2. A planet moves faster in the part of its orbit nearer the Sun and slower when farther from the Sun, sweeping out  equal areas in equal times - Kepler

3. For any force, there is an equal and opposite reaction force - Newton .

4. An object moves at constant velocity if there is no net force acting upon it - Newton

5. The orbit of each planet about the Sun is an ellipse with the Sun at one focus  - Kepler.

6. More distant planets orbit the Sun at slower average speeds, obeying the precise mathematical relationship p2-a3 - Kepler.

Explanation:

The three laws of planetary motion formulated by Johannes Kepler or Kepler's laws of planetary motion:

  1. The first law states that the planets move around the Sun in an elliptical orbit with the Sun at one of the foci.
  2. The second law states that the line segment joining a planet to the Sun sweeps out equal areas in equal time.
  3. The third law states that the square of the orbital period (p) of a planet is directly proportional to the cube of the mean distance (a) from the Sun (or semi-major axis of its orbit) i.e., p² is proportional to a³.

The three laws of motion formulated by Sir Isaac Newton or Newton's laws of motion:

  1. The first law, also known as the law of inertia states that an object at rest or moves at a constant velocity will remain at rest or keep moving at a constant velocity unless it is acted upon by a force.
  2. The second law states that the total force (F) applied on an object is directly related to the acceleration (a) of that object produced by the applied force and the mass (m) of the object, i.e., F = ma (assuming the mass m is constant).
  3. The third law, also known as the law of action and reaction states that when an object exerts a force on another object, then the latter exerts a force equal in magnitude and opposite in direction on the former object i.e., for every action, there is an equal and opposite reaction. The example includes the recoiling of a gun when it fires a bullet forward.
5 0
3 years ago
Help with this I can’t come up with anything
kakasveta [241]
Let’s say you have a spring. You press on the spring with your finger. The spring goes down. This is the action force. Then, the spring goes back up after you take your finger off of it. This is known as the reaction force.
3 0
3 years ago
Other questions:
  • Tornadoes are most frequent from _____. April to June October to December January to March July to August
    14·1 answer
  • Consider a pair of forces, one having a magnitude of 20 n and the other a magnitude of 12 n. what is the strongest possible net
    14·1 answer
  • Why do you think the temperature does not change much during a phase change? If possible, discuss your answer with your classmat
    11·1 answer
  • The total energy in a system is 675 J. The kinetic energy changes from 296 to 432 J. Which statement best describes the potentia
    6·2 answers
  • Given two vectors A⃗ =−2.00i^+ 4.00 j^+ 4.00 k^ and B⃗ = 1.00 i^+ 2.00 j^−3.00k^, do the following.
    5·1 answer
  • The student quickly discovers that placing the marshmallow over the flame is more effective than heating the marshmallow on the
    6·1 answer
  • What is the weight of a 48kg rock?
    11·1 answer
  • A student creates a model by placing raisins in bread dough and allowing the dough to rise for several hours. The student sketch
    15·1 answer
  • A cannonball is shot horizontally off a high castle wall at 47.4 m/s. What is the magnitude of the cannonball's velocity after 1
    10·1 answer
  • Two pulses move in opposite directions on a string and are identical in shape except that one has positive displacements of the
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!