1.63 moles since 1 mole is equal to 136.4332 grams
Answer:
Explanation:
Henry's law states that the solubility of a gas is directly proportional to its partial pressure. The equation may be written as:
Where is Henry's law constant.
Our strategy will be to identify the Henry's law constant for oxygen given the initial conditions and then use it to find the solubility at different conditions.
Given initially:
Also, at sea level, we have an atmospheric pressure of:
Given mole fraction:
According to Dalton's law of partial pressures, the partial pressure of oxygen is equal to the product of its mole fraction and the total pressure:
Then the equation becomes:
Solve for :
Now we're given that at an altitude of 12,000 ft, the atmospheric pressure is now:
Apply Henry's law using the constant we found:
When sulfate (SO₄²⁻) serves as the electron acceptor at the end of a respiratory electron transport chain, the product is hydrogen sulfide (H₂S).
How sulfate acts as electon acceptor and electron donor?
- Sulfate (SO₄²⁻) is used as the electron acceptor in sulfate reduction, which results in the production of hydrogen sulfide (H2S) as a metabolic byproduct.
- Many Gram negative bacteria identified in the -Proteobacteria use sulfate reduction, which is a rather energy-poor process.
- Gram-positive organisms connected to Desulfotomaculum or the archaeon Archaeoglobus also utilise it.
- Electron donors are needed for sulfate reduction, such as hydrogen gas or the carbon molecules lactate and pyruvate (organotrophic reducers) (lithotrophic reducers).
Learn more about the Electron transport chain with the help of the given link:
brainly.com/question/24372542
#SPJ4
Answer:
120 V usually but its not given in the option so 110 V
We first calculate the energy contained in one photon of this light using Planck's equation:
E = hc/λ
E = 6.63 x 10⁻³⁴ x 3 x 10⁸ / 590 x 10⁻⁹
E = 3.37 x 10⁻²² kJ/photon
Now, one mole of atoms will excite one mole of photons. This means that 6.02 x 10²³ photons will be excited
(3.37 x 10⁻²² kJ/photon) x (6.02 x 10²³ photons / mol)
The energy released will be 202.87 kJ/mol