Answer:
Attached below
Explanation:
Free energy of mixing = ΔGmix = Gf - Gi
attached below is the required derivation of the
<u>a) Molar Gibbs energy of mixing</u>
ΔGmix = Gf - Gi
hence : ΔGmix = ∩RT ( X1 In X1 + X2 In X2 + X3 In X3 + ------- )
<u>b) molar excess Gibbs energy of mixing</u>
Ni = chemical potential of gas
fi = Fugacity
N°i = Chemical potential of gas when Fugacity = 1
ΔG = RT In ( a2 / a1 )
Answer:
5.00 grams of salt contain more particles than 5.0 grams of sugar
Explanation:
Salt = NaCl
Molar mass = 58.45 g/mol
Sugar = C₁₂H₂₂O₁₁
Molar mass = 342.3 g/mol
Sugar's molar mass is higher than salt.
So 1 mol of sugar weighs more than 1 mol of salt
But 5 grams of salt occupies more mole than 5 grams of sugar
5 grams of salt = 5g / 58.45 g/m = 0.085 moles
5 grams of sugar = 5g/ 342.3 g/m = 0.014 moles
In conclusion, we have more moles of salt in 5 grams; therefore there are more particles than in 5 g of sugar.
The correct answer would be the fourth option. A nucleotide consists of a phosphate group, a pentose sugar, and a nitrogen containing base that are all linked together by covalent bonds. Nucleotides are the monomer units of nucleic acids and is the basic unit of the DNA.
Answer:
The rate at which ammonia is being produced is 0.41 kg/sec.
Explanation:
Haber reaction
Volume of dinitrogen consumed in a second = 505 L
Temperature at which reaction is carried out,T= 172°C = 445.15 K
Pressure at which reaction is carried out, P = 0.88 atm
Let the moles of dinitrogen be n.
Using an Ideal gas equation:


According to reaction , 1 mol of ditnitrogen gas produces 2 moles of ammonia.
Then 12.1597 mol of dinitrogen will produce :
of ammonia
Mass of 24.3194 moles of ammonia =24.3194 mol × 17 g/mol
=413.43 g=0.41343 kg ≈ 0.41 kg
505 L of dinitrogen are consumed in 1 second to produce 0.41 kg of ammonia in 1 second. So the rate at which ammonia is being produced is 0.41 kg/sec.
How many hydrogen atoms are involved in this reaction? 3