Answer:- 537 kJ of heat is released.
Solution:- For the given equation,
is -657 kJ and the coefficient of
in the balanced equation is 2. It means 657 kJ of heat is released when 2 moles of chlorine are used. We need to calculate the heat released when 116 g of
are used.
Grams of chlorine are converted to moles and then multiplied by the
value and divided by the coefficient of chlorine and the set could be shown using dimensional analysis as:

= 537.46 kJ
If we use the correct sig figs then it needs to be round off to three sig figs as the given grams of chlorine has only three sig figs. So, 537 kJ of heat is released.
Well, there’s some pretty poor choices out there, but I think chlorine trifluoride would be the worst since it would burn everything it touched.
Answer:
C. Tetrahedral
Explanation:
Tetrahedral would be the correct choice because the central atom has 4 domains (1 bond counts as 1 domain so 4 bonds =4) and no lone pairs which means it has tetra (which translates to four) domains hence tetrahedral.
Answer:
Final temperature of the gas = -146.63 °C
Explanation:
At constant pressure, volume and temperature of the gases are related as:

Where,
V1 = Initial volume = 1.00 L
V2 = Final volume = 2.40 L
T1 = Initial temperature = 30.5 °C = 30.5 + 273.15 = 303.65 K
Now, substitute the values in the above equation,



T2 = 126.52 K
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
T( °C) = T(K) - 273.15
= 126.52 - 273.15 = -146.63 °C
Both have Colorless gas, External MSDS, Phase Behavior solid, liquid, and gas.