1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serga [27]
3 years ago
14

Please help right away!!!

Mathematics
2 answers:
zalisa [80]3 years ago
5 0

Answer:

Option D is the answer.

Step-by-step explanation:

When investing in a savings plan, it is better to - Invest all the money you can in the beginning at the highest compounding interest rate possible, and then add money periodically.

This is because, compound interest gains interest on interest. So, such compounding accounts are more beneficial than simple interest accounts.

ira [324]3 years ago
3 0
It depends on your goals.

typically it's B but it could be D
You might be interested in
Use abc to find the value of sin a
kolbaska11 [484]

sin α = opposite leg/ hypotenuse

For ΔABC,

sin A = |BC|/|AB|

sin A = 12/37

7 0
3 years ago
Is this a rational number
ra1l [238]

Answer:

Note that it is not a perfectly elastic result so it is <em>irrational</em><em> </em>

7 0
3 years ago
What value of x is in the solution set of 2(3x – 1) 2 4x - 6?<br> 0-10<br> O -5<br> O-3<br> 0 -1
DaniilM [7]
-3 is the correct answer
3 0
3 years ago
(a) Find a vector parallel to the line of intersection of the planes −4x+2y−z=1 and 3x−2y+2z=1.
valentinak56 [21]

Find the intersection of the two planes. Do this by solving for <em>z</em> in terms of <em>x</em> and <em>y </em>; then solve for <em>y</em> in terms of <em>x</em> ; then again for <em>z</em> but only in terms of <em>x</em>.

-4<em>x</em> + 2<em>y</em> - <em>z</em> = 1   ==>   <em>z</em> = -4<em>x</em> + 2<em>y</em> - 1

3<em>x</em> - 2<em>y</em> + 2<em>z</em> = 1   ==>   <em>z</em> = (1 - 3<em>x</em> + 2<em>y</em>)/2

==>   -4<em>x</em> + 2<em>y</em> - 1 = (1 - 3<em>x</em> + 2<em>y</em>)/2

==>   -8<em>x</em> + 4<em>y</em> - 2 = 1 - 3<em>x</em> + 2<em>y</em>

==>   -5<em>x</em> + 2<em>y</em> = 3

==>   <em>y</em> = (3 + 5<em>x</em>)/2

==>   <em>z</em> = -4<em>x</em> + 2 (3 + 5<em>x</em>)/2 - 1 = <em>x</em> + 2

So if we take <em>x</em> = <em>t</em>, the line of intersection is parameterized by

<em>r</em><em>(t)</em> = ⟨<em>t</em>, (3 + 5<em>t</em> )/2, 2 + <em>t</em>⟩

Just to not have to work with fractions, scale this by a factor of 2, so that

<em>r</em><em>(t)</em> = ⟨2<em>t</em>, 3 + 5<em>t</em>, 4 + 2<em>t</em>⟩

(a) The tangent vector to <em>r</em><em>(t)</em> is parallel to this line, so you can use

<em>v</em> = d<em>r</em>/d<em>t</em> = d/d<em>t</em> ⟨2<em>t</em>, 3 + 5<em>t</em>, 4 + 2<em>t</em>⟩ = ⟨2, 5, 2⟩

or any scalar multiple of this.

(b) (-1, -1, 1) indeed lies in both planes. Plug in <em>x</em> = -1, <em>y</em> = 1, and <em>z</em> = 1 to both plane equations to see this for yourself. We already found the parameterization for the intersection,

<em>r</em><em>(t)</em> = ⟨2<em>t</em>, 3 + 5<em>t</em>, 4 + 2<em>t</em>⟩

3 0
3 years ago
The weight of an organ in adult males has a bell-shaped distribution with a mean of 310 grams and a standard deviation of 25 gra
Shkiper50 [21]

Answer:

About 68% of organs will be between 300 grams and 320 grams, about 95% of organs will be About 68% of organs will be between 300 grams and 320 grams, About 68% of organs will be between 300 grams and 320 grams, about 95% of organs will be between 280 grams and 360 grams, the percentage of organs weighs less than 280 grams or more than 360 grams is 5%, and the percentage of organs weighs between 300 grams and 360 grams is 81.5%.

Given :

The weight of an organ in adult males has a bell-shaped distribution with a mean of 320 grams and a standard deviation of 20 grams.

A) According to the empirical rule, using the values of mean and standard deviation:

\rm \mu-\sigma = 320-20=300 \; gramsμ+σ=320+20=320grams

Therefore, about 68% of organs will be between 300 grams and 320 grams.

B) Again according to the empirical rule, using the values of mean and standard deviation:

\rm \mu-2\times \sigma = 320-40=280 \; gramsμ−2×σ=320−40=280grams

\rm \mu+2\times \sigma = 320+40=360 \; gramsμ+2×σ=320+40=360grams

Therefore, according to the empirical rule, about 95% of organs will be between 280 grams and 360 grams.

C)

The percentage of organs weighs less than 280 grams or more than 360 grams = 100 - (The percentage of organs weighs between 280 grams and 360 grams)

The percentage of organs weighs less than 280 grams or more than 360 grams = 100 - 95 = 5%

D)

The percentage of organs weighs between 300 grams and 360 grams = 0.5 \times× ( percentage of organs weighs between 280 grams and 360 grams + percentage of organs weighs between 300 grams and 320 grams)

The percentage of organs weighs between 300 grams and 360 grams = 0.5 \times× (95 + 68)

So, the percentage of organs weighing between 300 grams and 360 grams is 81.5%.

For more information, refer to the link given below:

brainly.com/question/23017717 95% of organs will be between 280 grams and 360 grams, the percentage of organs weighs less than 280 grams or more than 360 grams is 5%, and the percentage of organs weighs between 300 grams and 360 grams is 81.5%.

Given :

The weight of an organ in adult males has a bell-shaped distribution with a mean of 320 grams and a standard deviation of 20 grams.

A) According to the empirical rule, using the values of mean and standard deviation:

\rm \mu-\sigma = 320-20=300 \; gramsμ−σ=320−20=300grams

\rm \mu+\sigma = 320+20=320 \; gramsμ+σ=320+20=320grams

Therefore, about 68% of organs will be between 300 grams and 320 grams.

B) Again according to the empirical rule, using the values of mean and standard deviation:

\rm \mu-2\times \sigma = 320-40=280 \; gramsμ−2×σ=320−40=280grams

\rm \mu+2\times \sigma = 320+40=360 \; gramsμ+2×σ=320+40=360grams

Therefore, according to the empirical rule, about 95% of organs will be between 280 grams and 360 grams.

C)

The percentage of organs weighs less than 280 grams or more than 360 grams = 100 - (The percentage of organs weighs between 280 grams and 360 grams)

The percentage of organs weighs less than 280 grams or more than 360 grams = 100 - 95 = 5%

D)

The percentage of organs weighs between 300 grams and 360 grams = 0.5 \times× ( percentage of organs weighs between 280 grams and 360 grams + percentage of organs weighs between 300 grams and 320 grams)

The percentage of organs weighs between 300 grams and 360 grams = 0.5 \times× (95 + 68)

So, the percentage of organs weighing between 300 grams and 360 grams is 81.5%.

For more information, refer to the link given below:

brainly.com/question/23017717

5 0
3 years ago
Other questions:
  • I'm Stuck on this problem
    6·1 answer
  • Which terms give is the perfect square of 3x4? A. 6x8 B. 6x16 C. 9x8 D. 9x16
    12·2 answers
  • HURRY !!! The ordered pairs shown below follow a pattern 0,2 1,3 2,4 3,5 4,6 which graph shows the ordered pair with an x coordi
    12·1 answer
  • Factor expression in x and y.<br> x² −25−2xy +y²
    11·1 answer
  • Find the measure of an exterior angle of a regular polygon with 6 sides. Round to the nearest tenth if necessary.
    6·2 answers
  • Given the function ƒ(x) = 5x2 − 9x + 18, find ƒ(3).
    14·1 answer
  • Which of the following is the equation of a line parallel to the line y = 4x + 1, passing throughout the point (5,1)?
    6·1 answer
  • Can 403/72 be reduced?
    9·2 answers
  • Below is a puzzle that requires algebraic thinking. Choose two numbers to fill in the white boxes in the top row. Follow the arr
    6·1 answer
  • HELP FAST PLEASE!!! Find the sample space of the situation using a table or tree diagram on
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!