Answer:
Formic acid, citric acid, Oxalic acid, washing soda, baking soda, etc. can be some examples of natural acids and natural bases. They both have domestic, industrial, and various other purposes.
Explanation:
<h3><u>
NATURAL ACIDS</u>
:</h3>
There are lots of natural acids present in our nature. Some of them are the following:
> <u>Formic acid</u>
USE: It is used in the stimulation of oil and gas wells as it is less reactive towards the metal.
> <u>Citric acid</u>
USE: It is considered as the best rust remover as it doesn't harm the metal just remove the rust.
> <u>Oxalic acid</u>
USE: It easily remove iron and ink stains and that's why it is used as an acid rinsing material in Laundries.
<h3><u>
NATURAL BASES</u>
:</h3>
There is a variety of natural base found in our nature which founds a lot of uses in day to day life. some of them are the following:
> <u>Washing soda</u>
USE: It is used in commercial detergent mixture to treat hard water.
> <u>Baking soda</u>
USE: It is the best rising agent used mostly in cooking and for domestic purposes like removing stains, etc..
Answer:24.31
Explanation:Contribution made by isotope of mass 23.99= 23.99×78.99=1894.97
Contribution made by isotope of mass 24.99=24.99×10.00=249.9
Contribution made by isotope of mass 25.98=25.98×11.01=286.04
Total contribution=1894.97+249.9+286.04=2430.91
Average mass=2430.91÷100
=24.31
I'm pretty sure the answer is 1. I and III
Answer:
21.2 gm
Explanation:
calculate the mass of butane needed to produce 64.1 g of carbon dioxide to three significant figures and appropriate units
butane is the hydrocarbon C4H10
in combustion, we react hydrocarbons with O2 to form CO2 and H2O
so
C4H10 + O2----------------> CO2 + H2O
BALANCE
2C4H10 + 1302--------> 8CO2 + 10 H2O
the molar mass of CO2 is 12 + 16X2 = 44
64.1 gm of CO2 is
64.1/44 = 1.46 MOLES OF CO2,
FOR EVERY 8 MOLES OF CO2 WE NEED 2 MOLES OF BUTANE IT IS A
8:2 OR 4:1 RATIO. THE MOLES OF C4H10 ARE 1/4 THE MOLES OF CO2
SO
THE MOLES OF C4H10 H10 ARE 1.46/4 =0.365 MOLES
THE MOLAR MASS OF BUTANE IS 58.12
0.365 MOLES OF C4H10 HAS A MASS OF 0.365 X 58.12 = 21.2 gm