Answer:
Step-by-step explanation:
Polynomial f(x) has the following conditions: zeros of -4 (multiplicity 3), 1 (multiplicity 1), and with f(0) = 320.
The first part zeros of -4 means (x+4) and multiplicity 3 means (x+4)^3.
The second part zeros of 1 means (x-1) and multiplicity 1 means (x-1).
The third part f(0) = 320 means substituting x=0 into (x+4)^3*(x-1)*k =320
(0+4)^3*(0-1)*k = 320
-64k = 320
k = -5
Combining all three conditions, f(x)
= -5(x+4)^3*(x-1)
= -5(x^3 + 3*4*x^2 + 3*4*4*x + 4^3)(x-1)
= -5(x^4 + 12x^3 + 48x^2 + 64x - x^3 - 12x^2 - 48x - 64)
= -5(x^4 + 11x^3 + 36x^2 + 16x -64)
= -5x^3 -55x^3 - 180x^2 - 80x + 320
Answer:
![g(x)=-2\sqrt[3]x](https://tex.z-dn.net/?f=g%28x%29%3D-2%5Csqrt%5B3%5Dx)
or

Step-by-step explanation:
Given
![f(x) = \sqrt[3]x](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Csqrt%5B3%5Dx)
Required
Write a rule for g(x)
See attachment for grid
From the attachment, we have:


We can represent g(x) as:

So, we have:
![g(x) = n * \sqrt[3]x](https://tex.z-dn.net/?f=g%28x%29%20%3D%20n%20%2A%20%5Csqrt%5B3%5Dx)
For:

![2 = n * \sqrt[3]{-1}](https://tex.z-dn.net/?f=2%20%3D%20n%20%2A%20%5Csqrt%5B3%5D%7B-1%7D)
This gives:

Solve for n


To confirm this value of n, we make use of:

So, we have:
![-2 = n * \sqrt[3]1](https://tex.z-dn.net/?f=-2%20%3D%20n%20%2A%20%5Csqrt%5B3%5D1)
This gives:

Solve for n


Hence:
![g(x) = n * \sqrt[3]x](https://tex.z-dn.net/?f=g%28x%29%20%3D%20n%20%2A%20%5Csqrt%5B3%5Dx)
![g(x)=-2\sqrt[3]x](https://tex.z-dn.net/?f=g%28x%29%3D-2%5Csqrt%5B3%5Dx)
or:

2/5 (x-4)=2x answer is x= -1