Answer: the membrane channel
Explanation:
In passive diffusion, the small water molecules can move across the phospholipid bilayer seen in blue. This layer acts as a semi-permeable or selectively permeable membrane; its hydrophilic heads are attracted to water (seen facing outwards) while its water-repellent hydrophobic tails face towards each other- allowing molecules of water to diffuse across the membrane along the concentration gradient.
Thus the water will move from an area of high concentration to an area of low concentration, until the system reaches a steady state called equilibrium- after this, there will be no net movement of water. Similarly via osmosis, the water passes through the membrane due to the difference in osmotic pressure on either side of the phospholipid bilayer this means that the water moves from regions of high osmotic pressure/concentration to regions of low pressure/ concentration to a steady state.
The dialysis tubing mimics a semi permeable membrane; it only allows water and small molecules of iodine to cross into the bag containing starch. The tubing is impermeable to starch; these large molecules require the aid of protein omplexes called membrane channels, in order to move across the membrane and against the concentration gradient.
Answer:
While <u>water soluble</u> hormones can travel freely in the blood, <u>lipid soluble </u>hormones require a carrier protein because they are not soluble in the aqueous plasma
Explanation:
The water-soluble hormones such as insulin are dissolved in the blood and are carried along with the blood to their target cells.
However, lipid-soluble hormones such as steroid hormones (cortisol) and thyroxine are hydrophobic in nature. These hormones are not dissolved in water-based blood plasma. So, these lipid-soluble hormones are carried through the carrier proteins.
Fish because it is full of healthy oils. But depends on the kind of fish. I know salmon is rich in omega 3 fa
Overeating and weight gain in rats result from either ______ or ______<span>. destruction of the VMH; stimulation of the LH. 3.</span>