They’re less reactive, they don’t react quickly with water or oxygen which they resist corrosion.
Answer : true
Answer:
Al + 4AgNO3 >>Al(NO3)3+ 3Ag
Explanation:
the number of moles of No3 of the products is 3 therefore we have to balance the reactants by adding 3 before the "AgNO3" which also leades us to adding 3 mols to Ag on the products side
Answer:
2.99 M
Explanation:
In order to solve this problem we need to keep in mind the definition of molarity:
- Molarity = moles of solute / liters of solution
In order to calculate the moles of solute, we <u>convert 125.6 g of NaF into moles</u> using its <em>molar mass</em>:
- 125.6 g NaF ÷ 42 g/mol = 2.99 mol NaF
As the volume is already given, we can proceed to <em>calculate the molarity</em>:
- Molarity = 2.99 mol / 1.00 L = 2.99 M
Answer: C) a redox reaction that produces an electric current
Explanation:
Chemical cell is a device which is used for the conversion of the chemical energy produced in a redox reaction into the electrical energy. The cell consists of the negative terminal called as anode where oxidation takes place and a positive terminal called as cathode where reduction takes place.
Electrolytic cell is a device which is used to carry out chemical reactions by the use of electrical energy. The cell consists of the negative terminal called as cathode where reduction takes place and a positive terminal called as anode where oxidation takes place.
<h3>
Answer:</h3>
2.125 g
<h3>
Explanation:</h3>
We have;
- Mass of NaBr sample is 11.97 g
- % composition by mass of Na in the sample is 22.34%
We are required to determine the mass of 9.51 g of a NaBr sample.
- Based on the law of of constant composition, a given sample of a compound will always contain the sample percentage composition of a given element.
In this case,
- A sample of 11.97 g of NaBr contains 22.34% of Na by mass
A sample of 9.51 g of NaBr will also contain 22.345 of Na by mass
% composition of an element by mass = (Mass of element ÷ mass of the compound) × 100
Mass of the element = (% composition of an element × mass of the compound) ÷ 100
Therefore;
Mass of sodium = (22.34% × 9.51 g) ÷ 100
= 2.125 g
Thus, the mass of sodium in 9.51 g of NaBr is 2.125 g