polyethylene contains HC=CH units.
mass of this is 26 gram/mol
number of such units =13500/26
Answer:
Results from method B is more reliable than method A.
Explanation:
The two method that are used for the analysis produced different results. The first method that is method A gives higher value of the iodine content than the method B.
When
was added to water, method A showed an increased in the iodine content and it increases with the increase in the amount of
.
Where as in the method B, there is no change in the results. Therefore the measurements provided by the method A shows an inference of
ion.
The measurement of the iodine content is affected by the presence of the ion
in water.
Since in method B there is no change in measurement, it is independent of the presence
ion in water.
As higher iodine content is given by method A, so
ion must be present in original water that must be interfering the measurement. Hence, method B is more reliable.
Answer:
1. The pressure will be 32 atm, twice the initial pressure.
2. The pressure will be 1.83 atm, one third of the initial pressure.
Explanation:
Boyle's law is one of the gas laws that relates the volume and pressure of a certain quantity of gas kept at a constant temperature.
This law says that "The volume occupied by a given gaseous mass at constant temperature is inversely proportional to pressure." This means that if the pressure increases, the volume decreases, while if the pressure decreases, the volume increases.
Boyle's law is expressed mathematically as:
Pressure * Volume = constant
or P * V = k
Ahora es posible suponer que tienes un cierto volumen de gas V1 que se encuentra a una presión P1 al comienzo del experimento. Si varias el volumen de gas hasta un nuevo valor V2, entonces la presión cambiará a P2, y se cumplirá:
P1*V1=P2*V2
1. In this case:
- P1= 16 atm
- V1
- P2= ?
- V2= V1÷2=
because the volume is halved.
So:
16 atm*V1= P2* 
Solving:
=P2
16 atm*2= P2
32 atm= P2
<u><em>The pressure will be 32 atm, twice the initial pressure.</em></u>
2. Now
- P1= 5.5 atm
- V1
- P2= ?
- V2= V1*3 because the volume is tripled.
So:
5.5 atm*V1= P2* V1*3
Solving:
=P2
= P2
1.83 atm= P2
<u><em>The pressure will be 1.83 atm, one third of the initial pressure.</em></u>
Answer:
20.2 amu.
Explanation:
Let A represent isotope ²⁰X
Let B represent isotope ²²X
From the question given above, the following data were obtained:
For Isotope A (²⁰X):
Mass of A = 20
Abundance (A%) = 90%
For Isotope B (²²X):
Mass of B = 22
Abundance (A%) = 10%
Relative atomic mass (RAM) =?
The relative atomic mass (RAM) of the element can be obtained as follow:
RAM = [(Mass of A × A%)/100] + [(Mass of B × B%)/100]
RAM = [(20 × 90)/100] + [(22 × 10)/100]
RAM = 18 + 2.2
RAM = 20.2 amu
Thus, relative atomic mass (RAM) of the element is 20.2 amu
Acids have a pH less than 7 (pH < 7)
Bases have a pH more than 7 (pH > 7)
A pH of 7 would be neutral
Hope this helped!