I think it’s to long to fit in a period??
Answer:

Explanation:
Given that:-
Pressure = 
The expression for the conversion of pressure in Pascal to pressure in atm is shown below:
P (Pa) =
P (atm)
Given the value of pressure = 43,836 Pa
So,
=
atm
Pressure = 6.80977 atm
Volume =
= 2.3 L ( 1 m³ = 1000 L)
n = 2 mol
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
6.80977 atm × 2.3 L = 2 mol × 0.0821 L.atm/K.mol × T
⇒T = 95.39 K
The expression for the kinetic energy is:-

k is Boltzmann's constant =
T is the temperature
So, 

Simple dimensional analysis.
okay so youll need a periodic table to look up the molar mass. youll be given either an amount of grams or moles.
For the reactants,
- The oxidation number of hydrogen = +1
- The oxidation number of oxygen = -2
- The oxidation number of arsenic = +5
- The oxidation number of carbon = +3
For the products,
- The oxidation number of hydrogen = +1
- The oxidation number of oxygen = -2
- The oxidation number of arsenic = +3
- The oxidation number of carbon = +4
Here, arsenic (+5 to +3) and carbon (+3 to +4) are the only oxidation numbers changing.
Note that an increase in oxidation number means electrons are lost. Thus oxidation is occurring, and a decrease in oxidation number means electrons are being gained, and thus reduction is occurring.
Also, the compound that contains the element being oxidized is the reducing agent, and the compound that contains the element being reduced is the oxidizing agent.
So, the answers are:
name of the element oxidized: Carbon
name of the element reduced: Arsenic
formula of the oxidizing agent: 
formula of the reducing agent: 