Rectangular with whole numbers
perimiter=legnth+legnth+width+width=2l+2w
therefor
p=2l+2w=2(l+w)
p/2=l+w
perimiter=20
20=2l+2w
divide by 2 to make simpler
10=l+w
find all combos
l>w so
l=9 and w=1
l=8 and w=2
l=7 and w=3
l=6 and w=4
combos
Answer:
x = 8 and y = 10
Step-by-step explanation:
Since the figures are congruent:
Angle PQR = EFG
6y + x = 68
Segment QR = FG
2x - 4 = 12
Solving that:
2x - 4 = 12
2x = 16
x = 8
Replacing x in 6y + x =68
6y + 8 = 68
6y = 60
y = 10
Answer:
c. ![\frac{1}{12n} = {[12n]}^{-1}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B12n%7D%20%3D%20%7B%5B12n%5D%7D%5E%7B-1%7D)
Step-by-step explanation:
![[\frac{1}{4}][\frac{2}{5}][\frac{1}{2}][\frac{4}{7}][\frac{5}{8}][\frac{2}{3}][\frac{7}{n}] = \frac{560}{6720n} = [12n]^{-1} = \frac{1}{12n}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B1%7D%7B4%7D%5D%5B%5Cfrac%7B2%7D%7B5%7D%5D%5B%5Cfrac%7B1%7D%7B2%7D%5D%5B%5Cfrac%7B4%7D%7B7%7D%5D%5B%5Cfrac%7B5%7D%7B8%7D%5D%5B%5Cfrac%7B2%7D%7B3%7D%5D%5B%5Cfrac%7B7%7D%7Bn%7D%5D%20%3D%20%5Cfrac%7B560%7D%7B6720n%7D%20%3D%20%5B12n%5D%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7B12n%7D)

* To make this simpler, reduce these two fractions in lowest terms.
I am joyous to assist you anytime.
I found this --The first step to dividing fractions is to find the reciprocal (reverse the numerator and denominator) of the second fraction. Next, multiply the two numerators. Then, multiply the two denominators. Finally, simplify the fractions if needed.