Answer:
There is an asymptote at x = 0
There is an asymptote at y = 23
Step-by-step explanation:
Given the function:
(23x+14)/x
Vertical asymptote is gotten by equating the denominator to zero
Since the denominator is x, hence the vertical asymptote is at x = 0. This shows that there is an asymptote at x = 0
Also for the horizontal asymptote, we will take the ratio of the coefficient of the variables in the numerator and denominator
Coefficient of x at the numerator = 23
Coefficient of x at the denominator = 1
Ratio = 23/1 = 23
This means that there is an asymptote at y = 23
Answer:
C will be the rightful answer
Answer:
Step-by-step explanation:
integral(x/(1+x^2)^2)dx
=(1/2)integral(2x/(1+x^2)^2)dx
=(1/2)[-1/(1+x^2)] +c
Answer:
7
Step-by-step explanation:
Answer: positive, linear association
Step-by-step explanation: that is the answer, because the dots are rising up in a slope