Answer:
E = 3 × 10¹⁰ J
Explanation:
Mass, m = 100 kg
We need to find energy made by the loss of 100 kg of mass. The formula between the mass and energy is given by :
E = mc²
Where c is speed of light
Putting all the values, we get :
E = 100 kg × (3×10⁸ m/s)²
= 3 × 10¹⁰ J
So, the required energy is 3 × 10¹⁰ J.
When water chemically combines with carbon dioxide, a Carbonic acid is formed.
<u>Explanation</u>:
- Carbon dioxide responds with water in a solution to form a weak acid, carbonic acid. Carbonic acid disassociates into hydrogen particles and bicarbonate particles. The hydrogen particles and water respond with the most basic minerals modifying the minerals.
-
Carbon dioxide and the other atmospheric gases disintegrate in surface waters. Dissolved gases are in equilibrium with the gas in the atmosphere. Carbon dioxide responds with water in a solution to form the weak acid, carbonic acid. Carbonic acid disassociates into hydrogen particles and bicarbonate particles.
-
The hydrogen particles and water respond with the most basic minerals altering the minerals. The results of enduring are prevalently clays and soluble particles, for example, calcium, iron, sodium, and potassium. Bicarbonate particles additionally remain in solution; a remnant of the carbonic acid that was utilized to weather the rocks.
- Frequency=v=2×10^15Hz
- Energy=E
Using planks quantum theory




Answer:
poisoning, breathing problems, skin rashes, allergic reactions, allergic sensitisation, cancer, and other health problems from exposure.
Explanation:
many hazardous chemicals are also classified as dangerous goods.
Answer:
50.76 mol H2O.
Explanation:
The photosynthesis follows the equation:
6CO2 + 6H2O ---> C6H12O6 + 6O2
This means that 6 mol of H2O are needed to obtain 1 mol of C6H12O6 (see the numbers that precedes every molecule to know how many mols are in game).
So we can say that:
1 mol C6H12O6 --------- 6 mol H2O
8.46 mol C6H12O6 -----x= 8.46 x 6 : 1 = 50.76 mol H20