Answer:
The possible valances can be determined by electron configuration and electron negativity
Good Luck even though this was asked 2 weeks ago
Explanation:
All atoms strive for stability. The optima electron configuration is the electron configuration of the VIII A family or inert gases.
Look at the electron configuration of the nonmetal and how many more electrons the nonmetal needs to achieve the stable electron configuration of the inert gases. Non metals tend to be negative in nature and gain electrons. ( They are oxidizing agents)
For example Florine atomic number 9 needs one more electron to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Flowrine has a valance of -1
Oxygen atomic number 8 needs two more electrons to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Oxygen has a valance charge of -2.
Non metals with a low electron negativity will lose electrons when reacting with another non metal that has a higher electron negativity. When the non metal forms an ion it is necessary to look at the electron structure to determine how many electrons the element can lose to gain stability.
For example Chlorine which is normally -1 like Florine when it combines with oxygen can be +1, +3, + 5 or +7. It can lose its one unpaired electron, or combinations of the unpaired electron and sets of the three pairs of electrons.
Answer:
During the process of reaching thermal equilibrium heat is transferred between the object. heat is always transferred from the object at the higher temperature to the object with lower temperature. For a gas, the heat transfer is related to a change in temperature.
Answer:
Explanation:
Heat involved Q = mcΔt where m is mass , c is specific heat of water and Δt is rise in temperature
= 150 x 4.18 x 25.8 J .
= 16176.6 J .
As the temperature rises , the reaction is exothermic.
The chemical reaction would be:
<span>CuSO4(aq) + NaOH(aq) = Cu(OH)2(s) + Na2SO4(aq)
One observation would be the formation of a precipitate since one of the products is not readily soluble to aqueous solution. A formation of a blue precipitate will be observed.</span>