Answer: It's a tie between f(x) and h(x). Both have the same max of y = 3
The highest point shown on the graph of f(x) is at (x,y) = (pi,3). The y value here is y = 3.
For h(x), the max occurs when cosine is at its largest: when cos(x) = 1.
So,
h(x) = 2*cos(x)+1
turns into
h(x) = 2*1+1
h(x) = 2+1
h(x) = 3
showing that h(x) maxes out at y = 3 as well
--------------------------------
Note: g(x) has all of its y values smaller than 0, so there's no way it can have a max y value larger than y = 3. See the attached image to see what this graph would look like if you plotted the 7 points. A parabola seems to form. Note how point D = (-3, -2) is the highest point for g(x). So the max for g(x) is y = -2
Answer:
<em>The ball's speed will be 10 m/s at t=1.22 seconds</em>
Step-by-step explanation:
The vertical motion of an object is controlled by the force of gravity. This means that there is a non-zero net force acting on the object that makes it accelerate downwards.
If the object is thrown upwards at speed vo, its speed at time t is:

Where g is the acceleration of gravity 
Our ball is thrown upwards with v0=22 m/s. We need to calculate the time when its speed is vf=10 m/s.
Solving the above equation for t:

Substituting:

t=1.22 seconds
The ball's speed will be 10 m/s at t=1.22 seconds
Comparing map distance to real distance we get 2cm/4km. That means 1cm = 2km.
So the map distance is half the real distance (well, technically not as one is in cm and the other in km but it’s enough to think this way) and a real distance of 10km must mean a map distance of half that (again ignoring the units) so we get 5cm.