Lets say we have a rectangle. if the ratio is 7:5, we can put the width as 7x, and the length as 5x (or vice versa, it doesn't really matter.) If the perimeter is solved by 2(h+w), we have 2(7x+5x)=96, or 2(7x)+2(5x)=96, which is C
(2x2x2)(2x2)
=2x2x2x2x2
=2x2x2x2x2
=32
Answer:
875
Step-by-step explanation:
30*15=450
30*10=300
20*5=100
12.5+12.5=25
450+300+100+25=875
I worked from bottom to top
Answer:
<u />![\displaystyle \lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} = \boxed{ \frac{1}{4} }](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%5Csqrt%7Bx%20%2B%201%7D%20-%202%7D%7Bx%20-%203%7D%20%3D%20%5Cboxed%7B%20%5Cfrac%7B1%7D%7B4%7D%20%7D)
General Formulas and Concepts:
<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]:
![\displaystyle \lim_{x \to c} x = c](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%20c%7D%20x%20%3D%20c)
Special Limit Rule [L’Hopital’s Rule]:
![\displaystyle \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%20c%7D%20%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%3D%20%5Clim_%7Bx%20%5Cto%20c%7D%20%5Cfrac%7Bf%27%28x%29%7D%7Bg%27%28x%29%7D)
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]:
![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify given limit</em>.
![\displaystyle \lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%5Csqrt%7Bx%20%2B%201%7D%20-%202%7D%7Bx%20-%203%7D)
<u>Step 2: Find Limit</u>
Let's start out by <em>directly</em> evaluating the limit:
- [Limit] Apply Limit Rule [Variable Direct Substitution]:
![\displaystyle \lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} = \frac{\sqrt{3 + 1} - 2}{3 - 3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%5Csqrt%7Bx%20%2B%201%7D%20-%202%7D%7Bx%20-%203%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B3%20%2B%201%7D%20-%202%7D%7B3%20-%203%7D)
- Evaluate:
![\displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \frac{\sqrt{3 + 1} - 2}{3 - 3} \\& = \frac{0}{0} \leftarrow \\\end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%5Csqrt%7Bx%20%2B%201%7D%20-%202%7D%7Bx%20-%203%7D%20%26%20%3D%20%5Cfrac%7B%5Csqrt%7B3%20%2B%201%7D%20-%202%7D%7B3%20-%203%7D%20%5C%5C%26%20%3D%20%5Cfrac%7B0%7D%7B0%7D%20%5Cleftarrow%20%5C%5C%5Cend%7Baligned%7D)
When we do evaluate the limit directly, we end up with an indeterminant form. We can now use L' Hopital's Rule to simply the limit:
- [Limit] Apply Limit Rule [L' Hopital's Rule]:
![\displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\\end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%5Csqrt%7Bx%20%2B%201%7D%20-%202%7D%7Bx%20-%203%7D%20%26%20%3D%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%28%5Csqrt%7Bx%20%2B%201%7D%20-%202%29%27%7D%7B%28x%20-%203%29%27%7D%20%5C%5C%5Cend%7Baligned%7D)
- [Limit] Differentiate [Derivative Rules and Properties]:
![\displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\& = \lim_{x \to 3} \frac{1}{2\sqrt{x + 1}} \leftarrow \\\end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%5Csqrt%7Bx%20%2B%201%7D%20-%202%7D%7Bx%20-%203%7D%20%26%20%3D%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%28%5Csqrt%7Bx%20%2B%201%7D%20-%202%29%27%7D%7B%28x%20-%203%29%27%7D%20%5C%5C%26%20%3D%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%20%2B%201%7D%7D%20%5Cleftarrow%20%5C%5C%5Cend%7Baligned%7D)
- [Limit] Apply Limit Rule [Variable Direct Substitution]:
![\displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\& = \lim_{x \to 3} \frac{1}{2\sqrt{x + 1}} \\& = \frac{1}{2\sqrt{3 + 1}} \leftarrow \\\end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%5Csqrt%7Bx%20%2B%201%7D%20-%202%7D%7Bx%20-%203%7D%20%26%20%3D%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%28%5Csqrt%7Bx%20%2B%201%7D%20-%202%29%27%7D%7B%28x%20-%203%29%27%7D%20%5C%5C%26%20%3D%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%20%2B%201%7D%7D%20%5C%5C%26%20%3D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7B3%20%2B%201%7D%7D%20%5Cleftarrow%20%5C%5C%5Cend%7Baligned%7D)
- Evaluate:
![\displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\& = \lim_{x \to 3} \frac{1}{2\sqrt{x + 1}} \\& = \frac{1}{2\sqrt{3 + 1}} \\& = \boxed{ \frac{1}{4} } \\\end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%5Csqrt%7Bx%20%2B%201%7D%20-%202%7D%7Bx%20-%203%7D%20%26%20%3D%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B%28%5Csqrt%7Bx%20%2B%201%7D%20-%202%29%27%7D%7B%28x%20-%203%29%27%7D%20%5C%5C%26%20%3D%20%5Clim_%7Bx%20%5Cto%203%7D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%20%2B%201%7D%7D%20%5C%5C%26%20%3D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7B3%20%2B%201%7D%7D%20%5C%5C%26%20%3D%20%5Cboxed%7B%20%5Cfrac%7B1%7D%7B4%7D%20%7D%20%5C%5C%5Cend%7Baligned%7D)
∴ we have <em>evaluated</em> the given limit.
___
Learn more about limits: brainly.com/question/27807253
Learn more about Calculus: brainly.com/question/27805589
___
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits