Answer:
![f(x)=\sqrt[3]{x} +5\\\\\implies y = \sqrt{3}{x}+5](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D%20%2B5%5C%5C%5C%5C%5Cimplies%20y%20%3D%20%5Csqrt%7B3%7D%7Bx%7D%2B5)
a) Since the function is given to be one - one so the inverse of the function exist. Now f(x) maps x to y so the inverse of f(x) maps y to x
To find inverse, first interchange the roles of x and y :
![\implies x = \sqrt[3]{y}+5](https://tex.z-dn.net/?f=%5Cimplies%20x%20%3D%20%5Csqrt%5B3%5D%7By%7D%2B5)
Now, solve for y :
![x = \sqrt[3]{y}+5\\\\\implies \sqrt[3]{y}=x-5\\\\\text{Now, cubing both the sides. We get,}\\\\\implies y=(x-5)^3\\\\\implies y=x^3-15\cdot x^2+75\cdot x-125\\\\\implies\bf f^{-1}(x)=x^3-15\cdot x^2+75\cdot x-125](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%5B3%5D%7By%7D%2B5%5C%5C%5C%5C%5Cimplies%20%5Csqrt%5B3%5D%7By%7D%3Dx-5%5C%5C%5C%5C%5Ctext%7BNow%2C%20cubing%20both%20the%20sides.%20We%20get%2C%7D%5C%5C%5C%5C%5Cimplies%20y%3D%28x-5%29%5E3%5C%5C%5C%5C%5Cimplies%20y%3Dx%5E3-15%5Ccdot%20x%5E2%2B75%5Ccdot%20x-125%5C%5C%5C%5C%5Cimplies%5Cbf%20f%5E%7B-1%7D%28x%29%3Dx%5E3-15%5Ccdot%20x%5E2%2B75%5Ccdot%20x-125)
b) To find coordinates of f(x) :
![f(x)=\sqrt[3]{x} +5](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D%20%2B5)
First take y = 0 then take x = 0
⇒ x-coordinates : (-125,0) and y-coordinates : (0,5)
To find coordinates of inverse function of x :

First take y = 0 then take x = 0
⇒ x - coordinates : (5,0) and y - coordinates : (0,-125)
c) f(x) is defined for every real number.
⇒ Domain : -∞ < x < ∞
and Range : -∞ < f(x) < ∞
And inverse function of x is also defined for every real number :
⇒ Domain : -∞ < x < ∞

Parallel sides of parallelogram are equal in length





AD=6x+14=6(6)+14=36+14=50
Option D
2/3x+3=6
2/3x=3
x= 3*3/2
x=9/2=4.5
(Mark me the brainliest if this was helpful)
12*3= 36
12 and 3 could be factors of 36.
I hope this helped you! <3
Step-by-step explanation:
x² + y² − 8x + 10y − 8 = 0
Rearrange:
x² − 8x + y² + 10y = 8
To complete the square, take half of the x and y coefficients, square it, then add the result to both sides.
(-8/2)² = 16
(10/2)² = 25
x² − 8x + 16 + y² + 10y + 25 = 8 + 16 + 25
x² − 8x + 16 + y² + 10y + 25 = 49
Factor the squares:
(x − 4)² + (y + 5)² = 49
The center is (4, -5) and the radius is 7.