1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tresset_1 [31]
3 years ago
9

What best explains whether a triangle with side links 5 cm 13 cm and 12 cm is a right triangle

Mathematics
2 answers:
Lostsunrise [7]3 years ago
4 0

Step-by-step explanation:

Pythagoras Theorem

If the sum of the squares of the smaller two sides is equal to the square if the third side then it is a right triangle

{a}^{2}  +  {b}^{2}  =  {c}^{2}

So, (5)^2 + (12)^2

is 25 + 144 = 169

Which is equal to (13)^2 which is also 169

The sides of the given triangle follows pythagoras theorem, therefore it is a right triangle

Hope it helps:)

Aloiza [94]3 years ago
4 0

Answer:

Pythagorean theorem

Step-by-step explanation:

We can explain it using  the Pythagorean theorem. Right triangles always have a hypotenuse which is the longest side. That means 13 must be the hypotenuse of the triangle. The Pythagorean theorem is a^2+b^2=c^2

We already know all the values since every side is given so we just fill it in.

5^2+12^2=13^2

25+144=169

169=169

It is a right triangle

You might be interested in
Pls help I’ll give brainliest
nikdorinn [45]

Answer:

<em><u>can</u></em><em><u>'t</u></em><em><u> </u></em><em><u>se</u></em><em><u>e</u></em><em><u> it</u></em><em><u> </u></em><em><u>too</u></em><em><u> </u></em><em><u>sm</u></em><em><u>all</u></em><em><u> </u></em><em><u>ta</u></em><em><u>lk</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>shot</u></em><em><u> </u></em><em><u>lit</u></em><em><u>tle</u></em><em><u> bit</u></em><em><u> </u></em><em><u>clo</u></em><em><u>se</u></em>

7 0
3 years ago
Are the two triangles congruent ? Please answer correctly !!!!!!!!!!!!! Will mark Brianliest !!!!!!!!!!!!!!!
mel-nik [20]

Answer:

yes

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Find the volume of a cone with a base diameter of 12 m and a height of 10 m.
dexar [7]

Answer:

=376.8 m^{3}

Step-by-step explanation:

V=nr^{2}  \frac{h}{3}  Where V is the volume , r is the radius and h is the perpendicular height .

r = \frac{12}{2} m=6

h = 10m

n=3.14

v= 3.14 * 6*6 *\frac{10}{3}

=376.8 m^{3}

5 0
3 years ago
Is this right yes or no
tatyana61 [14]

Answer:

yes you did that correctly

6 0
2 years ago
Read 2 more answers
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
Other questions:
  • Name the rule for each statement: (SSS, ASA, SAS, AAS) Hint: you may use some of the rules more than once. Two triangles are con
    10·1 answer
  • In your top dresser drawer are 6 blue socks and 10 grey socks, unpaired and mixed up. one dark morning you pull two socks from t
    6·1 answer
  • Jim wants to purchase a used boat. The price is $8,000 cash or $1,200 down and 18 monthly payments of $429.00. Jim decided to fi
    8·1 answer
  • Suppose that a subset of 4 balls will be randomly selected from a collection of 4 amber balls, 4 blue balls,4 copper balls, and
    10·1 answer
  • -5+7m-20=20-2m<br> Multi-step equations
    6·2 answers
  • Answer the following questions CORRECTLY I will know if this is wrong. I WILL REPORT ANY INCORRECT ANSWERS!
    14·2 answers
  • 2/5m - 4 + = 16 + is what?
    14·1 answer
  • irma bought two identical purse and one sweatshirt. The Sweatshirt cost her $10. She spend total $29.99 What is the price of the
    7·2 answers
  • Please help me with this
    12·1 answer
  • What are the missing measures for E and J???<br><br> Are the triangles similar? Yes or no?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!