Answer:
45
Explanation:
because the equation for speed is distance divided by time! hope that helps gave a nice day!
I haven't worked on Part-A, and I don't happen to know the magnitude of the gravitational force that the Sun exerts on the Earth.
But whatever it is, it's exactly, precisely, identical, the same, and equal to the magnitude of the gravitational force that the Earth exerts on the Sun.
I think that's the THIRD choice here, but I'm not sure of that either.
Answer:
Q = 1.095 x 10^-9 C
Let the force experienced by the top piece of tape be F
F = kQ²/r²
r = distance between the two pieces tape = 1.00cm = 1.00 x 10^ -2 m
1/4(pi)*Eo = k = 8.99 x 10^9 Nm²/C²
The electric force of repulsion between the two charges and the weight of the top piece of tape are equal so
F = kQ²/r² = mg
Where m is the mass of the top piece of tape and g is the acceleration due to gravity
On re-arranging the equation above,
Q² = mgr²/k
Q² = ((11.0 x 10^-6) x 9.8 x (1.00x10^-2)²)/(8.99 x 10^9)
Q = 1.095x10^-9 C
Explanation:
The charge Q on both pieces of tape are equal and both act with a force of repulsion on each other.
The force of repulsion between both tapes pushes the top piece of tape upwards. The weight of the top piece of tape acts vertically downward. Since the top tape is in a position of equilibrium, the two forces acting on the top piece of tape must be equal to each other. This assumption is backed up by newton's first law of motion which states that the summation of all forces acting on a body at rest must be equal to zero. That is
Fe (electric force) - Fg (gravitational force) = 0
Fe = Fg
kQ²/r² = mg
On substituting the respective values for all variables except Q and rearranging the equation Q = 1.09 x 10^-9
Answer:
its false
Explanation:
since the penny is thrown straight up its not going to move forwad with you and the bus since it has no forces pushing on it. If the bus wasn't moving it would land back on your hand
Answer:
3.91
Explanation:
Given that
Final reading of the voltmeter, V2 = 45 v
Initial reading of the voltmeter, V1 = 11.5 v
The dielectric constant k, of a material is usually given as
k = V2/V1
k = 45 / 11.5
k = 3.91
Therefore, the dielectric constant of the material as we've calculated above is sure to be 3.91.
I hope that helps you understand