Answer:
where the y axis is
Explanation:
In more simple terms, a horizontal line on any chart is where the y-axis values are equal. If it has been drawn to show a series of highs in the data, a data point moving above the horizontal line would indicate a rise in the y-axis value over recent values in the data sample.
Based on the options given, the most likely answer to this query is B) The temperature must be converted to Kelvin. Meaning, the temperature should be in SI unit.
Thank you for your question. Please don't hesitate to ask in Brainly your queries.
No. A neutron star is the weird remains of a star that blew its outer layers off
in a nova event, and then had enough mass left so that gravity crushed its
electrons into its protons, and then what was left of it shrank down to a sphere
of unimaginably dense neutron soup. But it didn't have enough mass to go
any farther than that.
A black hole is the remains of a star that had enough mass to go even farther
than that. No force in the universe was able to stop it from contracting, so it
kept contracting until its mass occupied no volume ... zero. It became even
more weird, and is composed of a substance that we don't know anything about
and can't describe, and occupies zero volume.
Contrary to popular fairy tales, a black hole doesn't reach out and "suck things in".
It's just so small (zero) that things can get very close to it. You know that gravity
gets stronger as you get closer to an object, so if the object has no size at all, you
can get really really close to it, and THAT's where the gravity gets really strong.
You may weigh, let's say, 100 pounds on the Earth. But you're like 4,000 miles
from the center of the Earth. What if all of the earth's mass was crammed into
the size of a bean. Then you could get 1 inch from it, and at that distance from
the mass of the Earth, you would weigh 25,344,000,000 pounds.
But Earth's mass is not enough to make a black hole. That takes a minimum
of about 3 times the mass of the sun, which is right about 1 million times the
Earth's mass. THEN you can get a lightweight black hole.
Do you see how it works now ?
I know. It all seems too fantastic to be true.
It sure does.
Answer:
The frequency of these waves is 
Explanation:
Given that,
Wavelength = 6.6 km
Distance = 8810 km
Time t = 8.67 hr
We need to calculate the velocity of sound
Using formula of velocity

Where, D = distance
T = time
Put the value into the formula


We need to calculate the frequency
Using formula of frequency


Put the value into the formula





Hence, The frequency of these waves is 
Answer:
you couldn't do this on your own or search it up on google