F equals 3N with respect to the circle's center, moving in the same direction as the centripetal acceleration.
<h3>How much centripetal force is there in a centrifuge?</h3>
Centripetal force is the force that pushes an item in the direction of its center of curvature. It is fundamental to how a centrifuge operates.
<h3>On a roller coaster, what is centripetal force?</h3>
An item travelling in a circle is pushed inward toward what is known as the center of rotation, which is essentially what a roller coaster accomplishes when it travels through a loop. The force that maintains an object moving along a curved route is this pull toward the center, or centripetal force.
To know more about centripetal force visit:-
brainly.com/question/11324711
#SPJ4
Answer:
(a) v = 5.42m/s
(b) vo = 4.64m/s
(c) a = 2874.28m/s^2
(d) Δy = 5.11*10^-3m
Explanation:
(a) The velocity of the ball before it hits the floor is given by:
(1)
g: gravitational acceleration = 9.8m/s^2
h: height where the ball falls down = 1.50m

The speed of the ball is 5.42m/s
(b) To calculate the velocity of the ball, after it leaves the floor, you use the information of the maximum height reached by the ball after it leaves the floor.
You use the following formula:
(2)
vo: velocity of the ball where it starts its motion upward
You solve for vo and replace the values of the parameters:

The velocity of the ball is 4.64m/s
(c) The acceleration is given by:


The acceleration of the ball is 2874.28/s^2
(d) The compression of the ball is:

THe compression of the ball when it strikes the floor is 5.11*10^-3m
You can tell a lot about an object that's not moving,
and also a lot about the forces acting on it:
==> If the box is at rest on the table, then it is not accelerating.
==> Since it is not accelerating, I can say that the forces on it are balanced.
==> That means that the sum of all forces acting on the box is zero,
and the effect of all the forces acting on it is the same as if there were
no forces acting on it at all.
==> This in turn means that all of the horizontal forces are balanced,
AND all of the vertical forces are balanced.
Horizontal forces:
sliding friction, somebody pushing the box
All of the forces on this list must add up to zero. So ...
(sliding friction force) = (pushing force), in the opposite direction.
If nobody pushing the box, then sliding friction force = zero.
Vertical forces:
gravitational force (weight of the box, pulling it down)
normal force (table pushing the box up)
All of the forces on this list must add up to zero, so ...
(Gravitational force down) + (normal force up) = zero
(Gravitational force down) = -(normal force up) .