Answer: The range of wavelengths of light that can be used to cause given phenomenon is
.
Explanation:
Given: 222 kJ/mol (1 kJ = 1000 J) = 222000 J
Formula used is as follows.

where,
E = energy
h = Planck's constant = 
c = speed of light = 
Substitute the values into above formula as follows.

Thus, we can conclude that the range of wavelengths of light that can be used to cause given phenomenon is
.
<span>First:
46.7 g of N with 53.3 g of O,
=> mass ratio O to N = 53.3 / 46.7 = 1.1413
Second
17.9 g of N and 82.0 g of O.
mass ratio of O to N = 82.0 / 17.9 = 4.5810
Third
Ratio of the mass ratio of O to N in the second compound
to the mass ratio of O to N in the first compound =
= 4.5810 / 1.1413 = 4.013 ≈ 4
Answer: 4
</span>
Answer:

Explanation:
We are given the amounts of two reactants, so this is a limiting reactant problem.
We know that we will need moles, so, lets assemble the data in one place.
2Mg + O₂ ⟶ 2MgO
n/mol: 2 5
Calculate the moles of MgO we can obtain from each reactant.
From Mg:
The molar ratio of MgO:Mg is 2:2

From O₂:
The molar ratio of MgO:O₂ is 2:1.

Answer:
Empirical Observation, Replicable Experiments, Provisional Results, Objective Approach, and Systematic Observation.