When dealing with making diluted solutions from concentrated solutions, we can use the following formula
c1v1 = c2v2
where c1 and v1 are the concentration and volume of the concentrated solution respectively.
c2 and v2 are the concentration and volume of the diluted solution respectively
substituting these values in the above formula,
20 mL x 0.200 M = C x 250.0 mL
C = 0.0160 M
Answer:
A_________________________
Answer:
5.06atm
Explanation:
Using the combined gas law equation;
P1V1/T1 = P2V2/T2
Where;
P1 = initial pressure (atm)
P2 = final pressure (atm)
V1 = initial volume (Litres)
V2 = final volume (Litres)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the information provided in this question;
P1 = 1.34 atm
P2 = ?
V1 = 5.48 L
V2 = 1.32 L
T1 = 61 °C = 61 + 273 = 334K
T2 = 31 °C = 31 + 273 = 304K
Using P1V1/T1 = P2V2/T2
1.34 × 5.48/334 = P2 × 1.32/304
7.34/334 = 1.32P2/304
Cross multiply
334 × 1.32P2 = 304 × 7.34
440.88P2 = 2231.36
P2 = 2231.36/440.88
P2 = 5.06
The final pressure is 5.06atm
A amplitude = 0.50 m and wave-length = 1.0 m
B amplitude = 0.40 m and wave-length = 2.0 m
C amplitude = 0.60 m and wave-length = 2.0 m
Answer:
Covalent bonds are formed when electrons are shared between elements that are nonmetals. The ammonium ion, NH+4 , would have covalent bonds because both nitrogen and hydrogen are nonmetals. ... The rest of the bonds all contain electrons from both hydrogen and nitrogen, so they would be considered ordinary covalent bonds.