Does mass<span> alone provide no information about the amount or size of a measured quantity? No, we need combine </span>mass<span> and </span>volume<span> into "one equation" to </span>determine<span> "</span>density<span>" provides more ... </span>g/mL<span>. An </span>object has<span> a mass of </span>75 grams<span> and a volume of </span>25 cc<span>. ... A </span>certain object weighs 1.25 kg<span> and </span>has<span> a </span>density of<span> </span>5.00 g/<span>mL</span>
Answer:
6 is the right answer I know cause I like science
Answer:
A) (3.2g)
Explanation:
Did you reposed this? Because I remember answering this
Lifting the backpack off the floor. Force is being applied in only one direction then (up) which is what constitutes as work. Carrying the box of crayons applies force in two directions (up and forward), which cancel each other out. Work has a vector, which is a quantity containing both direction and magnitude (one, finite direction, not two).
The volume at 100 mmHg : 0.656 L
<h3>
Further explanation</h3>
Boyle's Law
<em>At a constant temperature, the gas volume is inversely proportional to the pressure applied </em>

V₁=3.5 L
P₁=2.5 kPa=18,7515 mmHg
P₂=100 mmHg
