Lets take 100 g of this compound,
so it is going to be 2.00 g H, 32.7 g S and 65.3 g O.
2.00 g H *1 mol H/1.01 g H ≈ 1.98 mol H
32.7 g S *1 mol S/ 32.1 g S ≈ 1.02 mol S
65.3 g O * 1 mol O/16.0 g O ≈ 4.08 mol O
1.98 mol H : 1.02 mol S : 4.08 mol O = 2 mol H : 1 mol S : 4 mol O
Empirical formula
H2SO4
Answer:
20.5torr
Explanation:
Given parameters:
V₁ = 15L
P₁ = 8.2 x 10⁴torr
V₂ = 6 x 10⁴L
Unknown:
P₂ = ?
Solution:
To solve this problem we have to apply the claims of Boyle's law.
Boyle's law is given mathematically as;
P₁ V₁ = P₂V₂
where P₁ is the initial pressure
V₁ is the initial volume
P₂ is final pressure
V₂ is final volume
8.2 x 10⁴ x 15 = P₂ x 6 x 10⁴
P₂ = 20.5torr
Answer: 7.07 grams
Explanation:
To calculate the moles :


According to stoichiometry :
1 mole of
require 1 mole of 
Thus 0.052 moles of
will require=
of 
Thus
is the limiting reagent as it limits the formation of product and
is the excess reagent.
As 1 mole of
give = 1 mole of 
Thus 0.052 moles of
give =
of 
Mass of 
Thus 7.07 g of
will be produced from the given masses of both reactants.
The temperature of a liquid can exceed its boiling point. An example is water. Although at ordinary pressure of 1 atm, the boiling point is 100 degrees, water can still exist in higher temperatures but this time in another state. Superheated steam is the term used for water whose temperature has higher than the boiling point