1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
4 years ago
10

Polymers can be natural or synthetic. a)-True b)- false?

Engineering
1 answer:
Olenka [21]4 years ago
8 0

Answer:

TRUE

Explanation:

Polymers can be natural as well as synthetic

The polymer which are found in nature are called natural polymer tease polymer are not synthesized, they are found in nature

Example of natural polymers is cellulose, proteins etc

On the other hand synthetic polymers are not found in nature they are synthesized in market

There are many example of synthetic polymer

Example : nylon, Teflon etc  

So it is a true statement

You might be interested in
Air enters a compressor steadily at the ambient conditions of 100 kPa and 22°C and leaves at 800 kPa. Heat is lost from the comp
telo118 [61]

Answer:

a) 358.8K

b) 181.1 kJ/kg.K

c) 0.0068 kJ/kg.K

Explanation:

Given:

P1 = 100kPa

P2= 800kPa

T1 = 22°C = 22+273 = 295K

q_out = 120 kJ/kg

∆S_air = 0.40 kJ/kg.k

T2 =??

a) Using the formula for change in entropy of air, we have:

∆S_air = c_p In \frac{T_2}{T_1} - Rln \frac{P_2}{P_1}

Let's take gas constant, Cp= 1.005 kJ/kg.K and R = 0.287 kJ/kg.K

Solving, we have:

[/tex] -0.40= (1.005)ln\frac{T_2}{295} ln\frac{800}{100}[/tex]

-0.40= 1.005(ln T_2 - 5.68697)- 0.5968

Solving for T2 we have:

T_2 = 5.8828

Taking the exponential on the equation (both sides), we have:

[/tex] T_2 = e^5^.^8^8^2^8 = 358.8K[/tex]

b) Work input to compressor:

w_in = c_p(T_2 - T_1)+q_out

w_in = 1.005(358.8 - 295)+120

= 184.1 kJ/kg

c) Entropy genered during this process, we use the expression;

Egen = ∆Eair + ∆Es

Where; Egen = generated entropy

∆Eair = Entropy change of air in compressor

∆Es = Entropy change in surrounding.

We need to first find ∆Es, since it is unknown.

Therefore ∆Es = \frac{q_out}{T_1}

\frac{120kJ/kg.k}{295K}

∆Es = 0.4068kJ/kg.k

Hence, entropy generated, Egen will be calculated as:

= -0.40 kJ/kg.K + 0.40608kJ/kg.K

= 0.0068kJ/kg.k

3 0
3 years ago
An electric motor is to be supported by four identical mounts. Each mount can be treated as a linear prevent problems due requir
Artyom0805 [142]

GIVEN:

Amplitude, A = 0.1mm

Force, F =1 N

mass of motor, m = 120 kg

operating speed, N = 720 rpm

\frac{A}{F} =  \frac{0.1\times 10^{-3}}{1} = 0.1\times 10^{-3}

Formula Used:

A = \frac{F}{\sqrt{(K_{t} - m\omega ^{2}) +(\zeta \omega ^{2})}}

Solution:

Let Stiffness be denoted by 'K' for each mounting, then for 4 mountings it is 4K

We know that:

\omega = \frac{2 \pi\times N}{60}

so,

\omega = \frac{2 \pi\times 720}{60} = 75.39 rad/s

Using the given formula:

Damping is negligible, so, \zeta = 0

\frac{A}{F} will give the tranfer function

Therefore,

\frac{A}{F} = \frac{1}{\sqrt{(4K - 120\ ^{2})}}

0.1\times 10^{-3} =  \frac{1}{\sqrt{(4K - 120\ ^{2})}}

Required stiffness coefficient, K = 173009 N/m = 173.01 N/mm

8 0
3 years ago
Fluid power is a. The technology that deals with the generation, control, and transmission of power-using pressurized fluids b.
snow_tiger [21]

Answer:  a) The technology that deals with the generation, control and transmission of power using pressurized fluids

Explanation: Fluid power is defined as the fluids which are under pressure and then are used for generation,control and transmit the power. Fluid power systems produces high forces as well as power in small amount . These systems usually tend to have better life if maintained properly. The force that are applied on this system can be monitored by gauges as well as meter.

8 0
3 years ago
A square silicon chip (k = 152 W/m·K) is of width 7 mm on a side and of thickness 3 mm. The chip is mounted in a substrate such
Harrizon [31]

Answer:

The steady-state temperature difference is 2.42 K

Explanation:

Rate of heat transfer = kA∆T/t

Rate of heat transfer = 6 W

k is the heat transfer coefficient = 152 W/m.K

A is the area of the square silicon = width^2 = (7/1000)^2 = 4.9×10^-5 m^2

t is the thickness of the silicon = 3 mm = 3/1000 = 0.003 m

6 = 152×4.9×10^-5×∆T/0.003

∆T = 6×0.003/152×4.9×10^-5 = 2.42 K

7 0
3 years ago
A robot was able to detect a burning smell at a shopping mall and prevent a major disaster. Which function enabled the robot to
adelina 88 [10]

Answer:

Smoke detectors on the robot.

Plz rate as Brainliest. I need it to get to the next rank.

3 0
3 years ago
Other questions:
  • Estimate the daily carbon utilization to remove chlorobenzene from 1.0 MGD of ground water saturated with chlorobenzene. Assume
    12·1 answer
  • One type of illumination system consists of rows of strip fluorescents and a ceiling that will transmit light. For this system t
    15·1 answer
  • Why is it important to stop climate change?
    15·2 answers
  • Wastewater flows into a _________ once it is released into a floor drain.
    5·1 answer
  • Why or why not the following materials will make good candidates for the construction of
    15·1 answer
  • The Reynolds number, rhoVD/μ is a very important parameter in fluid mechanics. Determine its value for ethyl alcohol flowing at
    5·1 answer
  • A mass weighing 22 lb stretches a spring 4.5 in. The mass is also attached to a damper with Y coefficient . Determine the value
    12·1 answer
  • If you add 10 J of heat to a system so that the final temperature of the system is 200K, what is the change in entropy of the sy
    9·1 answer
  • A kite is an airfoil that uses the wind to produce a lift. Held in place by a string, a kite can remain aloft indefinitely. The
    9·1 answer
  • 1)A wheel is used to turn a valve stem on a water valve. If the wheel radius is 1 foot and the stem, (axle), radius is .5 inches
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!