Answer:
The answer is 1823.9
Explanation:
Solution
Given that:
m = 5.5 kg/s
= m₁ = m₂ = m₃
The work carried out by the energy balance is given as follows:
m₁h₁ = m₂h₂ +m₃h₃ + w
Now,
By applying the steam table we have that<
p₃ = 50 kPa
T₃ = 100°C
Which is
h₃ = 2682.4 kJ/KJ
s₃ = 7.6953 kJ/kgK
Since it is an isentropic process:
Then,
p₂ = 500 kPa
s₂=s₃ = 7.6953 kJ/kgK
which is
h₂ =3207.21 kJ/KgK
p₁ = 3HP0
s₁ = s₂=s₃ = 7.6953 kJ/kgK
h₁ =3854.85 kJ/kg
Thus,
Since 5 % of this flow diverted to p₂ = 500 kPa
Then
w =m (h₁-0.05 h₂ -0.95 )h₃
5.5(3854.85 - 0.05 * 3207.21 - 0.95 * 2682.4)
5.5( 3854.83 * 3207.21 - 0.95 * 2682.4)
5.5 ( 123363249.32 -0.95 * 2682.4)
w=1823.9
Answer:
Remain the same.
Explanation:
If you doubled the voltage frequency in an RL series AC circuit, the inductive resistance would <u>remain the same</u>.
Answer: You need to lift a load of 15 tons (30,000 pounds) a distance of 25 feet. The distance is measured from the center pin of the crane to the center of the load. Once you determine the distance, look on that line for the largest capacity; that will indicate how many feet of boom must be extended
Explanation:
Answer:
The heater load =35 KJ/kg
Explanation:
Given that
At initial condition
Temperature= 15°C
RH=80%
At final condition
Temperature= 50°C
We know that in sensible heating process humidity ratio remain constant.
Now from chart
At temperature= 15°C and RH=80%

At temperature= 50°C


The heater load = 73 - 38 KJ/kg
The heater load =35 KJ/kg