Answer:
2
Explanation:
my sister did this and its the answer
Answer: Your question has some missing figures so kindly plug in the values into the solution provided to get the exact amount of money saved
answer : Electric power generated = 216 * 10^6 kJ
money saved = $0.XY * 60000 kwh
Explanation:
<u>Calculating the amount of electric power generated by wind turbine</u>
power generated = ( 30 * 2000 ) kWh = 60000 kWh
Electric energy generated = 60000 kWh * 3600 kJ = 216 * 10^6 kJ
<u>Calculate money saved by school per year </u>
$0.XY * 60000 kwh
Answer:
a)W=12.62 kJ/mol
b)W=12.59 kJ/mol
Explanation:
At T = 100 °C the second and third virial coefficients are
B = -242.5 cm^3 mol^-1
C = 25200 cm^6 mo1^-2
Now according isothermal work of one mole methyl gas is
W=-
a=
b=
from virial equation

And

a=
b=
Now calculate V1 and V2 at given condition

Substitute given values
= 1 x 10^5 , T = 373.15 and given values of coefficients we get

Solve for V1 by iterative or alternative cubic equation solver we get

Similarly solve for state 2 at P2 = 50 bar we get

Now

a=241.33
b=30780
After performing integration we get work done on the system is
W=12.62 kJ/mol
(b) for Z = 1 + B' P +C' P^2 = PV/RT by performing differential we get
dV=RT(-1/p^2+0+C')dP
Hence work done on the system is

a=
b=
by substituting given limit and P = 1 bar , P2 = 50 bar and T = 373 K we get work
W=12.59 kJ/mol
The work by differ between a and b because the conversion of constant of virial coefficients are valid only for infinite series
Answer:
a) What is the surface temperature, in °C, after 400 s?
T (0,400 sec) = 800°C
b) Yes, the surface temperature is greater than the ignition temperature of oak (400°C) after 400 s
c) What is the temperature, in °C, 1 mm from the surface after 400 s?
T (1 mm, 400 sec) = 798.35°C
Explanation:
oak initial Temperature = 25°C = 298 K
oak exposed to gas of temp = 800°C = 1073 K
h = 20 W/m².K
From the book, Oak properties are e=545kg/m³ k=0.19w/m.k Cp=2385J/kg.k
Assume: Volume = 1 m³, and from energy balance the heat transfer is an unsteady state.
From energy balance: 
Initial temperature wall = 
Surface temperature = T
Gas exposed temperature = 