1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zaharov [31]
3 years ago
9

Water flows through a horizontal 60 mm diameter galvanized iron pipe at a rate of 0.02 m3/s. If the pressure drop is 135 kPa per

10 m of pipe, do you think this pipe is
a) a new pipe,
b) an old pipe with somewhat increased roughness due to aging or
c) a very old pipe that is partially clogged by deposits. Justify your answer.
Engineering
1 answer:
maksim [4K]3 years ago
5 0

Answer:

pipe is old one with increased roughness

Explanation:

discharge is given as

V =\frac{Q}{A} = \frac{ 0.02}{\pi \4 \times (60\times 10^{-3})^2}

V = 7.07  m/s

from bernou;ii's theorem we have

\frac{p_1}{\gamma}  +\frac{V_1^2}{2g} + z_1 = \frac{p_2}{\gamma}  +\frac{V_2^2}{2g} + z_2 + h_l

as we know pipe is horizontal and with constant velocity so we have

\frac{P_1}{\gamma } + \frac{P_2 {\gamma } + \frac{flv^2}{2gD}

P_1 -P_2 = \frac{flv^2}{2gD} \times \gamma

135 \times 10^3 = \frac{f \times 10\times 7.07^2}{2\times 9.81 \times 60 \times 10^{-5}} \times 1000 \times 9.81

solving for friction factor f

f = 0.0324

fro galvanized iron pipe we have \epsilon  = 0.15 mm

\frac{\epsilon}{d} = \frac{0.15}{60} = 0.0025

reynold number is

Re =\frac{Vd}{\nu} = \frac{7.07 \times 60\times 10^{-3}}{1.12\times 10^{-6}}

Re = 378750

from moody chart

For Re = 378750 and \frac{\epsilon}{d} = 0.0025

f_{new} = 0.025

therefore new friction factor is less than old friction factoer hence pipe is not new one

now for Re = 378750 and f = 0.0324

from moody chart

we have \frac{\epsilon}{d} =0.006

\epsilon = 0.006 \times 60

\epsilon = 0.36 mm

thus pipe is old one with increased roughness

You might be interested in
Assume a program requires the execution of 50 x 106 FP instructions, 110 x 106 INT instructions, 80 x 106 L/S instructions, and
Pavlova-9 [17]

Answer:

Part A:

1.3568*10^{-5}=\frac{5300* New\  CPI_1+11660*1+8480*4+1696*2}{2*10^9\ Hz} \\ New\ CPI_1=-4.12

CPI cannot be negative so it is not possible to for program to run two times faster.

Part B:

1.3568*10^{-5}=\frac{5300*1+11660*1+8480*New\ CPI_3+1696*2}{2*10^9\ Hz} \\ New\ CPI_3=0.8

CPI reduced by 1-\frac{0.8}{4} = 0.80=80%

Part C:

New Execution Time=\frac{5300*0.6+11660*0.6+8480*2.8+1696*1.4}{2*10^9\ Hz}=1.81472*10^{-5}\ s

Increase in speed=1-\frac{1.81472*10^{-5}}{2.7136*10^{-5}} =0.33125= 33.125\%

Explanation:

FP Instructions=50*106=5300

INT  Instructions=110*106=11660

L/S  Instructions=80*106=8480

Branch  Instructions=16*106=1696

Calculating Execution Time:

Execution Time=\frac{\sum^4_{i=1} Number\ of\ Instruction*\ CPI_{i}}{Clock\ Rate}

Execution Time=\frac{5300*1+11660*1+8480*4+1696*2}{2*10^9\ Hz}

Execution Time=2.7136*10^{-5}\ s

Part A:

For Program to run two times faster,Execution Time (Calculated above) is reduced to half.

New Execution Time=\frac{2.7136*10^{-5}}{2}=1.3568*10^{-5}\ s

1.3568*10^{-5}=\frac{5300* New\  CPI_1+11660*1+8480*4+1696*2}{2*10^9\ Hz} \\ New\ CPI_1=-4.12

CPI cannot be negative so it is not possible to for program to run two times faster.

Part B:

For Program to run two times faster,Execution Time (Calculated above) is reduced to half.

New Execution Time=\frac{2.7136*10^{-5}}{2}=1.3568*10^{-5}\ s

1.3568*10^{-5}=\frac{5300*1+11660*1+8480*New\ CPI_3+1696*2}{2*10^9\ Hz} \\ New\ CPI_3=0.8

CPI reduced by 1-\frac{0.8}{4} = 0.80=80%

Part C:

New\ CPI_1=0.6*Old\ CPI_1=0.6*1=0.6\\New\ CPI_2=0.6*Old\ CPI_2=0.6*1=0.6\\New\ CPI_3=0.7*Old\ CPI_3=0.7*4=2.8\\New\ CPI_4=0.7*Old\ CPI_4=0.7*2=1.4

New Execution Time=\frac{\sum^4_{i=1} Number\ of\ Instruction*\ CPI_{i}}{Clock\ Rate}

New Execution Time=\frac{5300*0.6+11660*0.6+8480*2.8+1696*1.4}{2*10^9\ Hz}=1.81472*10^{-5}\ s

Increase in speed=1-\frac{1.81472*10^{-5}}{2.7136*10^{-5}} =0.33125= 33.125\%

8 0
3 years ago
A spring-mass-damper instrument is employed for acceleration measurements. The spring constant is 12000 N/m. The mass is 5 g. Th
shepuryov [24]

Answer:

a) 246.56 Hz

b) 203.313 Hz

c) Add more springs

Explanation:

Spring constant = 12000 N/m

mass = 5g = 5 * 10^-3 kg

damping ratio = 0.4

<u>a) Calculate Natural frequency </u>

Wn = √k/m = \sqrt{12000 /  5*10^{-3}  }

                   = 1549.19 rad/s  ≈ 246.56 Hz

<u>b) Bandwidth of instrument </u>

W / Wn = \sqrt{1-2(0.4)^2}

W / Wn = 0.8246

therefore Bandwidth ( W ) = Wn * 0.8246 = 246.56 * 0.8246 = 203.313 Hz

C ) To increase the bandwidth we have to add more springs

5 0
3 years ago
Technician A says it will save you money if you get a high interest rate from a bank on the loan. Technician B says it is always
zubka84 [21]
Is there a other option
5 0
3 years ago
What is the significance of Saint Venant's principle?
nexus9112 [7]

Answer:

While calculating the stresses in a body since we we assume a constant distribution of stress across a cross section if the body is loaded along the centroid of the cross section , this assumption of uniformity is assumed only on the basis of Saint Venant's Principle.

Saint venant principle states that the non uniformity in the stress at the point of application of load is only significant at small distances below the load and depths greater than the width of the loaded material this non uniformity is negligible and hence a uniform stress distribution is a reasonable and correct assumption while solving the body for stresses thus greatly simplifying the analysis.

7 0
3 years ago
Write multiple if statements: If carYear is before 1967, print "Probably has few safety features." (without quotes). If after 19
Free_Kalibri [48]

Answer:

The solution code is written in Python 3.

  1. carYear = 1995
  2. if(carYear < 1967):
  3.    print("Probably has few safety features.\n")
  4. if(carYear > 1970):
  5.    print("Probably has head rests. \n")
  6. if(carYear > 1991):
  7.    print("Probably has electronic stability control.\n")
  8. if(carYear > 2002):
  9.    print("Probably has airbags. \n")

Explanation:

Firstly, create a variable, <em>carYear</em> to hold the value of year of the car make. (Line 1)

Next, create multiple if statements as required by the question (Line 3-13). The operator "<" denotes "smaller" and therefore <em>carYear < 1967</em> means any year before 1967. On another hand, the operator ">" denotes "bigger" and therefore <em>carYear > 1970 </em>means any year after 1970.

The print statement in each of the if statements is done using the Python built-in function <em>print()</em>. The "\n" is an escape sequence that create a new line at the end of each printed phrase.

5 0
3 years ago
Other questions:
  • Explain about Absolute viscosity, kinematic viscosity and SUS?
    11·1 answer
  • Using the results of the Arrhenius analysis (Ea=93.1kJ/molEa=93.1kJ/mol and A=4.36×1011M⋅s−1A=4.36×1011M⋅s−1), predict the rate
    10·1 answer
  • The lattice constant of a simple cubic primitive cell is 5.28 Å. Determine the distancebetween the nearest parallel ( a ) (100),
    13·1 answer
  • John Locke believed that:
    6·1 answer
  • Which of the following correctly explains why it would be beneficial for an engineer to become a member of the Leadership in Ene
    15·2 answers
  • A continuously variable transmission:
    13·1 answer
  • (,,)=^3−^3+^3, where is the sphere ^2 + ^2 + ^2=^
    6·1 answer
  • The best saw for cutting miter joints is the
    10·1 answer
  • Rear axles are usually lubricated by the same gear oil that lubricates the differential. True or false
    12·1 answer
  • What are the inputs and outputs of a sailboat?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!