Answer:
The 95% confidence interval for the true proportion of defective batteries is (0.0966, 0.1034).
It is better to take a larger sample to derive conclusion about the true parameter value.
Step-by-step explanation:
The (1 - <em>α</em>) % confidence interval for proportion is:
![CI=\hat p\pm z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}{n}}](https://tex.z-dn.net/?f=CI%3D%5Chat%20p%5Cpm%20z_%7B%5Calpha%2F2%7D%5Csqrt%7B%5Cfrac%7B%5Chat%20p%281-%5Chat%20p%29%7D%7Bn%7D%7D)
Given:
<em>n</em> = 2000
<em>X</em> = 200
The sample proportion is:
![\hat p=\frac{X}{n}=\frac{200}{2000}=0.10](https://tex.z-dn.net/?f=%5Chat%20p%3D%5Cfrac%7BX%7D%7Bn%7D%3D%5Cfrac%7B200%7D%7B2000%7D%3D0.10)
The critical value of <em>z</em> for 95% confidence interval is:
![z_{\alpha /2}=z_{0.05/2}=z_{0.025}=1.96](https://tex.z-dn.net/?f=z_%7B%5Calpha%20%2F2%7D%3Dz_%7B0.05%2F2%7D%3Dz_%7B0.025%7D%3D1.96)
Compute the 95% confidence interval as follows:
![CI=\hat p\pm z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}{n}}\\=0.10\pm1.96\times\sqrt{\frac{0.10(1-0.10)}{2000}}\\=0.10\pm0.0034\\=(0.0966, 0.1034)](https://tex.z-dn.net/?f=CI%3D%5Chat%20p%5Cpm%20z_%7B%5Calpha%2F2%7D%5Csqrt%7B%5Cfrac%7B%5Chat%20p%281-%5Chat%20p%29%7D%7Bn%7D%7D%5C%5C%3D0.10%5Cpm1.96%5Ctimes%5Csqrt%7B%5Cfrac%7B0.10%281-0.10%29%7D%7B2000%7D%7D%5C%5C%3D0.10%5Cpm0.0034%5C%5C%3D%280.0966%2C%200.1034%29)
Thus, the 95% confidence interval for the true proportion of defective batteries is (0.0966, 0.1034).
Now if in a sample of 100 batteries there are 15 defectives, the the 95% confidence interval for this sample is:
![CI=\hat p\pm z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}{n}}\\=0.15\pm1.96\times\sqrt{\frac{0.15(1-0.15)}{100}}\\=0.15\pm0.0706\\=(0.0794, 0.2206)](https://tex.z-dn.net/?f=CI%3D%5Chat%20p%5Cpm%20z_%7B%5Calpha%2F2%7D%5Csqrt%7B%5Cfrac%7B%5Chat%20p%281-%5Chat%20p%29%7D%7Bn%7D%7D%5C%5C%3D0.15%5Cpm1.96%5Ctimes%5Csqrt%7B%5Cfrac%7B0.15%281-0.15%29%7D%7B100%7D%7D%5C%5C%3D0.15%5Cpm0.0706%5C%5C%3D%280.0794%2C%200.2206%29)
It can be observed that as the sample size was decreased the width of the confidence interval was increased.
Thus, it can be concluded that it is better to take a larger sample to derive conclusion about the true parameter value.