"the argument" of a function, is simply "the expression being evaluated by that function".
Answer:
4 cm
Step-by-step explanation:
The figure is a parallelogram with area (A) calculated as
A = bh ( b is the base and h the perpendicular height )
Here A = 36 and b = 9 , thus
9h = 36 ( divide both sides by 9 )
h = 4 cm
You need to use basic algebra for this.
For this I’ll use o as the items and p for the payment. First you need to find out how long it took for all the items to scan, so if it took each item 2 seconds to be scanned you need to times the total number of items (o) by two e.g. o x 2 = 62 items times two seconds which is equivalent to 62 seconds (1.02 minutes) after this step you need to minus the total time it took to scan the items for the transaction time (2 minutes) e.g. 2.00 - 1.02 = 2.58 minutes.
Hope this helped :)
Consider rectangular box with
- length x units (x≥0);
- width 3 units;
- height (8-x) units (8-x≥0, then x≤8).
The volume of the rectangular box can be calculated as

In your case,

Note that maximal possible value of the height can be 8 units (when x=0 - minimal possible length) and the minimal possible height can be 0 units (when x=8 - maximal possible length).
From the attached graph you can see that the greatest x-intercept is x=8, then the height will be minimal and lenght will be maximal.
Then the volume will be V=0 (minimal).
Answer: correct choices are B (the maximum possible length), C (the minimum possible height)
Answer:
6ab + b^2 - 17a - 4b + 10
Step-by-step explanation:
-2(a+b-5)+3(-5a+2b)+b(6a+b-8)
Now we break the parenthesis. To break that, we multiply each of the value inside the parenthesis by the adjacent number. That is, for the first part of the expression, we multiply by -2, then by 3, and then by b.
Algebraic Operations need to be considered:
[ (-) x (-) = (+); (-) x (+) = (-)]
= [-(2*a) + (-2*b) - (-2*5)] + [3*(-5a) + (3*2b)] + [(b*6a) + (b*b) - (b*8)]
= -2a - 2b +10 -15a + 6b + 6ab + b^2 - 8b
Now, we will make the adjustment by the similarity value.
= - 2a - 15a - 2b + 6b - 8b + 6ab + b^2 + 10
= - 17a - 4b + 6ab + b^2 + 10
= 6ab + b^2 - 17a - 4b + 10
Therefore, the answer of the expression is = 6ab + b^2 - 17a - 4b + 10