4, 3, 1
Explanation:
Sb has four on the right, so it needs four on the left. It's all alone, so <u>4</u>.
O2 comes in pairs, so you only need <u>3</u> of those to get six oxygens.
And 1 is the place holder for the right side since we got the left to match perfectly.
The variable is what changes during an experiment. Hopefully this helped! :)
Answer:
d. the conjugate base of the weak acid
Explanation:
The strong base (BOH) is completely dissociated in water:
BOH → B⁺ + OH⁻
The resulting conjugate acid (OH⁻) is a weak acid, so it remains in solution as OH⁻ ions.
By other hand, the weak acid (HA) is only slightly dissociated in water:
HA ⇄ H⁺ + A⁻
The resulting conjugate base (A⁻) is a weak base. Thus, it reacts with H⁺ ions from water to form HA, increasing the concentration of OH⁻ ions in the solution.
Therefore, the resulting solution will have a pH > 7 (basic).
Answer:
- The chemical reaction is not balanced. There is two oxygens on the reactant's side while there's only one oxygen on the products side.
- I would not say it's following the law of conservation of mass as it's not a balanced equation.
- To balance this equation, you would need to add the coefficient of '2' to Magnesium (Mg) on the reactants side, and add the coefficient of '2' to the products side. This would make it so that there's 2 Mg's and 2 O's on both the reactant's side and products side.
edit: I hope this helped you in some way. ^^