Answer:
104,000 has 3 significant figure.
Explanation:
This is because all non-zero digits are significant and zeros in between non-zero digits are significant.
Answer: 60.1K
Explanation:
Initial volume of gas V1 = 423.3mL
Initial temperature T1 = 49.2°C
Convert temperature in Celsius to Kelvin
( 49.2°C + 273 = 322.2K)
Final temperature T2 = ?
Final volume V2 = 79mL
According to Charle's law, the volume of a fixed mass of a gas is directly proportional to the temperature.
Mathematically, Charles' Law is expressed as: V1/T1 = V2/T2
423.3mL/322.2 = 79mL/T2
To get the value of T2, cross multiply
423.3mL x T2 = 322.2K x 79mL
423.3mL x T2 = 25453.8
T2 = (25453.8/423.3mL)
T2 = 60.1K
Thus, the new temperature of the gas is 60.1K
Atoms are divisible contrary to the early beliefs that the smallest "indivisible" matter is an atom. When an atom loses its identity it means that they are divisible. Atoms chemically react with other kinds of atoms thus changing their activity.
They certainly are not that important to our lives, but it’s good to know :)
What is the percent by mass of sodium in Na2SO4? total mass of element in compound molar mass of compound Use %Element x 100
Answer:
D
Explanation:
The amount of energy released or absorbed is equal the product of the mass, the specific heat capacity and the temperature change. The temperature change being the difference between the final and initial temperature.
Q = mc∆T
Q = heat energy (Joules, J) m = mass of a substance (kg) c = specific heat (units J/g∙K)
∆ is a symbol meaning "the change in" ∆T = change in temperature (Kelvins, K)
From the data provided in the question, we can deduce that:
Q = 16.7KJ = 16,700J
m = 225g
c = 1.74J/g.k
For the temperature, let the final temperature be f. This means our ∆T = f - 20
16,700 = 225 * 1.74 * (f - 20)
16700 = 391.5 (f - 20)
f - 20 = 16700/391.5
f - 20 = 42.7
f = 20 + 42.7 = 62.7