From the combustion of octane, the formaldehyde will be formed as this equation:
C8H18 + O2 → CH2O + H2O this is the original equation but it is not a balanced equation, so let's start to balance it:
the equation to be balanced so the number of atoms on the right side of the equation sholud be equal with the number of atoms on the lef side.
-we have 8 C atoms on left side and 1 atom on the right side so we will try putting 8 CH2O on the right side instead of CH2O
C8H18 + O2 → 8 CH2O + H2O
we have 2 O atoms on the left side and 9 atoms on the right side so we will try first to put 9 O2 instead of O2 on the left side and put 2H2O on the right side and put 16 CH2O instead of 8 CH2O to make the atoms of O are equal on both sides = 18 atoms
C8H18 + 9 O2 → 16 CH2O + 2H2O
put now we have 8 atom C on the left side and 16 atom on the right side so, we will put 2 C8H18 instead of C8H18 now we get this equation:
2C8H18 + 9O2 →16 CH2O + 2H2O
-now we have 36 of H atoms on both sides.
- and 16 of C atoms on both sides.
- and 18 of O atoms on both sides.
now all the number of atoms of O & C & H are equal on both sides
∴ 2C8H18 + 9O2 → 16 CH2O + 2 H2O
is the final balanced equation for the formation of formaldehayde
In the past, restaurants had four hours, straight through, to cool food to 41°F or lower. Now the FDA recommends cooling food in two stages -- from 135°F to 70°F in two hours then from 70°F to 41°F or lower in an additional four hours for a total cooling time of six hours
Explanation:
the two-stage cooling method<span> is a </span><span>Food Code </span>counselled<span> procedure for cooling food in restaurants and foodservice </span>institutions<span>. </span>within the<span> two-stage cooling </span>methodology<span>, food is</span><span> cooled from 140° F (60° C) to 70° F (21° C) </span>among 2<span> hours and to 41° F (5° C) or lower </span>among<span> four hours. Use of this cooling </span>methodology<span> ensures that food is cooled quickly and safely and has no harmful effects.</span>
Answer:
MoClBr₂
Explanation:
First we calculate the mass of bromine in the compound:
- 300.00 g - (82.46224 g + 45.741 g) = 171.79676 g
Then we<u> calculate the number of moles of each element</u>, using their <em>respective molar masses</em>:
- 82.46224 g Mo ÷ 95.95 g/mol = 0.9594 mol Mo
- 45.741 g Cl ÷ 35.45 g/mol = 1.290 mol Cl
- 171.79676 g Br ÷79.9 g/mol = 2.150 mol Br
Now we <u>divide those numbers of moles by the lowest number among them</u>:
- 0.9594 mol Mo / 0.9594 = 1
- 1.290 mol Cl / 0.9594 = 1.34 ≅ 1
- 2.150 mol Br / 0.9594 = 2.24 ≅ 2
Meaning the empirical formula is MoClBr₂.
You have to use the equation PV=nRT.
P=pressure (in this case 1.89x10^3 kPa which equals 18.35677 atm)
1V=volume (in this case 685L)
n=moles (in this case the unknown)
R=gas constant (0.08206 (L atm)/(mol K))
T=temperature (in this case 621 K)
with the given information you can rewrite the ideal gas law equation as n=PV/RT.
n=(18.35677atm x 685L)/(0.08206atmL/molK x 621K)
n=246.8 moles
Hello!
The reduction in particle size results in an increased rate of solution. It occur because is harder for a a solvent to surround bigger molecules.
Hugs!