Answer:
No
Explanation:
The pH scale is a scale graduated from 0-14 which shows the degree of acidity of alkalinity of a substance. The pH scale is graduated in such a way that 0-6.9 indicates acidity, 7.0 indicate a neutral substance, while a pH of 8-14 indicates alkalinity respectively.
There are three main definitions of acids/bases
- Arrhenius definition
-Brownstead-Lowry definition
-Lewis definition
Arrhenius explains acids as any substance that produces hydrogen ions as its only positive ion in solution while a base produces hydroxide ions as its only negative ion in solution. The pH scale is based on corresponding values of pH derived from aqueous solutions of these substances.
However, not all acids/bases produces hydrogen or hydroxide ions in solution. Brownstead-Lowry definition of acids and Lewis definition of acids could be extended to nonaqueous media where the pH can not be measured as there are no hydrogen or hydroxide ions present in the solution.
This implies that pH measurement may not apply to acids/bases in the all the categories of acids/bases hence it can not be utilized for all acids and bases.
Arrhenius - sodium carbonate
Brownstead-Lowry - concentrated HF
Lewis acid - AlCl3
Answer:
This approximation of mass can be used to easily calculate how many neutrons an element has by simply subtracting the number of protons from the mass number. Protons and neutrons both weigh about one atomic mass unit or amu. Isotopes of the same element will have the same atomic number but different mass numbers.
Explanation:
Answer:
Explanation: The strengths of the inter molecular forces varies as follows -

The normal boiling point of CSe2 is 125°C and that of CS2 is 116°C, which explains the trend that as we move down the group, the boiling point of e compound increases as the size increases.
This usually happens because larger and heavier atoms have a tendency to exhibit greater inter molecular strengths due to the increase in size . As the size increases, the valence shell electrons move far away from the nucleus, thus has a greater tendency to attract the temporary dipoles.
And larger the inter molecular forces, more tightly the electrons will be held to each other and thus more thermal energy would be required to break the bonds between them.
Answer:
on https://www.ck12.org/book/peoples-physics-concepts/section/20.1/
Explanation:
it shows for calcium 45 and maybe a possible equation on 3/4th's scroll down?
<u>Answer:</u> The entropy change of the ethyl acetate is 133. J/K
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

Given mass of ethyl acetate = 398 g
Molar mass of ethyl acetate = 88.11 g/mol
Putting values in above equation, we get:

To calculate the entropy change for different phase at same temperature, we use the equation:

where,
= Entropy change = ?
n = moles of ethyl acetate = 4.52 moles
= enthalpy of fusion = 10.5 kJ/mol = 10500 J/mol (Conversion factor: 1 kJ = 1000 J)
T = temperature of the system = ![84.0^oC=[84+273]K=357K](https://tex.z-dn.net/?f=84.0%5EoC%3D%5B84%2B273%5DK%3D357K)
Putting values in above equation, we get:

Hence, the entropy change of the ethyl acetate is 133. J/K