Newtons law states F=ma
so F/m=a
in addition it makes logical sense the lighter an object the easier it is to accelerate its velocity form 0 to some quantity
Answer:
he correct answer is V = ER
Explanation:
In this exercise they give us the electric field on the surface of the sphere and ask us about the electric potential, the two quantities are related
ΔV = ∫ E.ds
where E is the elective field and normal displacement vector.
Since E is radial in a spray the displacement vector is also radial, the dot product e reduces to the algebraic product.
ΔV = ∫ E ds
ΔV = E s
since s is in the direction of the radii its value on the surface of the spheres s = R
ΔV = E R
checking the correct answer is V = ER
Acceleration<span> is a vector quantity that is defined as the rate at which an object changes its velocity. An object is </span>accelerating<span> if it is changing its velocity. It can be calculated by the expression:
a = v2 - v1 / t
From the given in the problem, we can solve for v2, the final velocity:
3 = v2 - 0 / 300
v2 = 900 m/s</span>
Answer:
The charge-to-mass ratio of the particle is 5.7 × 10⁵ C/kg
Explanation:
From the formulae
F = qvB and F = mv²/r
Where F is Force
q is charge
v is speed
B is magnetic field strength
m is mass
and r is radius
Then,
qvB = mv²/r
qB = mv/r
We can write that
q/m = v/rB ---- (1)
Also
From Electric force formula
F = Eq
Where E is the electric field
and magnetic force formula
F = Bqv
Since, electric force = magnetic force
Then, Eq = Bqv
E = Bv
∴ v = E/B
Substitute v = E/B into equation (1)
q/m = (E/B)/rB
∴ q/m = E/rB²
(NOTE: q/m is the charge to mass ratio)
From the question,
E = 3.10 ×10³ N/C
r = 4.20 cm = 0.0420 m
B = 0.360 T
Hence,
q/m = 3.10 ×10³ / 0.0420 × (0.360)²
q/m = 569517.9306 C/kg
q/m = 5.7 × 10⁵ C/kg
Hence, the charge-to-mass ratio of the particle is 5.7 × 10⁵ C/kg.
When a ball is thrown up by doing work, the velocity of the ball will be 2.6 m/s.
<h3>What is Work energy theorem?</h3>
It states that the Work done in moving a body is equal to the change in kinetic energy of the body
Kinetic energy = 1/2 mv²
Given is a ball of mass m = 0.750 kg and the work done on ball W = 2.50 J
The ball is initially at rest. So, initial velocity is zero. Then, change in kinetic energy will be
W= ΔK.E = K.Ef - K.Ei
According to work energy theorem, work done is
W = 2.5J = 1/2 x 0.750 x (v)² -0
v =2.6 m/s
Thus, the velocity of the ball is 2.6 m/s
Learn more about work energy theorem.
brainly.com/question/10063455
#SPJ1