1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hjlf
3 years ago
15

How do I factorise an expression

Mathematics
1 answer:
ololo11 [35]3 years ago
3 0
It factorises to -
4(x+6)

You might be interested in
2〖sen〗^2 x+3 senx+1=0
KonstantinChe [14]

2 sin²(<em>x</em>) + 3 sin(<em>x</em>) + 1 = 0

(2 sin(<em>x</em>) + 1) (sin(<em>x</em>) + 1) = 0

2 sin(<em>x</em>) + 1 = 0   OR   sin(<em>x</em>) + 1 = 0

sin(<em>x</em>) = -1/2   OR   sin(<em>x</em>) = -1

The first equation gives two solution sets,

<em>x</em> = sin⁻¹(-1/2) + 2<em>nπ</em> = -<em>π</em>/6 + 2<em>nπ</em>

<em>x</em> = <em>π</em> - sin⁻¹(-1/2) + 2<em>nπ</em> = 5<em>π</em>/6 + 2<em>nπ</em>

(where <em>n</em> is any integer), while the second equation gives

<em>x</em> = sin⁻¹(-1) + 2<em>nπ</em> = -<em>π</em>/2 + 2<em>nπ</em>

2 cot(<em>x</em>) sec(<em>x</em>) + 2 sec(<em>x</em>) + cot(<em>x</em>) + 1 = 0

2 sec(<em>x</em>) (cot(<em>x</em>) + 1) + cot(<em>x</em>) + 1 = 0

(2 sec(<em>x</em>) + 1) (cot(<em>x</em>) + 1) = 0

2 sec(<em>x</em>) + 1 = 0   OR   cot(<em>x</em>) + 1 = 0

sec(<em>x</em>) = -1/2   OR   cot(<em>x</em>) = -1

cos(<em>x</em>) = -2   OR   tan(<em>x</em>) = -1

The first equation has no (real) solutions, since -1 ≤ cos(<em>x</em>) ≤ 1 for all (real) <em>x</em>. The second equation gives

<em>x</em> = tan⁻¹(-1) + <em>nπ</em> = -<em>π</em>/4 + <em>nπ</em>

<em />

sin(<em>x</em>) cos²(<em>x</em>) = sin(<em>x</em>)

sin(<em>x</em>) cos²(<em>x</em>) - sin(<em>x</em>) = 0

sin(<em>x</em>) (cos²(<em>x</em>) - 1) = 0

sin(<em>x</em>) (-sin²(<em>x</em>)) = 0

sin³(<em>x</em>) = 0

sin(<em>x</em>) = 0

<em>x</em> = sin⁻¹(0) + 2<em>nπ</em> = 2<em>nπ</em>

<em />

2 cos²(<em>x</em>) + 2 sin(<em>x</em>) - 12 = 0

2 (1 - sin²(<em>x</em>)) + 2 sin(<em>x</em>) - 12 = 0

-2 sin²(<em>x</em>) + 2 sin(<em>x</em>) - 10 = 0

sin²(<em>x</em>) - sin(<em>x</em>) + 5 = 0

Using the quadratic formula, we get

sin(<em>x</em>) = (1 ± √(1 - 20)) / 2 = (1 ± √(-19)) / 2

but the square root contains a negative number, which means there is no real solution.

2 csc²(<em>x</em>) + cot²(<em>x</em>) - 3 = 0

2 (cot²(<em>x</em>) + 1) + cot²(<em>x</em>) - 3 = 0

3 cot²(<em>x</em>) - 1 = 0

cot²(<em>x</em>) = 1/3

tan²(<em>x</em>) = 3

tan(<em>x</em>) = ± √3

<em>x</em> = tan⁻¹(√3) + <em>nπ</em>  OR   <em>x</em> = tan⁻¹(-√3) + <em>nπ</em>

<em>x</em> = <em>π</em>/3 + <em>nπ</em>   OR   <em>x</em> = -<em>π</em>/3 + <em>nπ</em>

7 0
3 years ago
For an integer n ≥ 0, show that (n/2) - (-n/2) = n.<br><br> Use greatest integer function
mars1129 [50]

The greatest integer function returns the largest integer smaller than the number you provide it. That is, if <em>n</em> ≤ <em>x</em> < <em>n</em> + 1, where <em>n</em> is an integer, then the "greatest integer of <em>x</em>" is [<em>x</em>] = <em>n</em>.

• Let <em>n</em> be even. Then we can write <em>n</em> = 2<em>k</em> for some integer <em>k</em> ≥ 0. Now,

[<em>n</em>/2] = [<em>k</em>] = <em>k</em>

while

[-<em>n</em>/2] = [-<em>k</em>] = -<em>k</em>

so that

[<em>n</em>/2] - [-<em>n</em>/2] = 2<em>k</em> = <em>n</em>

<em />

• Let <em>n</em> be odd. Then <em>n</em> = 2<em>k</em> + 1 for some integer <em>k</em> ≥ 0. Every odd integer occurs between two even integers, so that

<em>n</em> - 1 < <em>n</em> < <em>n</em> + 1

or equivalently,

2<em>k</em> < <em>n</em> < 2<em>k</em> + 2

so that

<em>k</em> < <em>n</em>/2 < <em>k</em> + 1

It follows that [<em>n</em>/2] = <em>k</em>.

Similarly, if we negative the previous inequality, we have

-<em>k</em> > -<em>n</em>/2 > -(<em>k</em> + 1), or -<em>k</em> - 1 < -<em>n</em>/2 < -<em>k</em>

which means [-<em>n</em>/2] = -<em>k</em> - 1.

So we make the same conclusion,

[<em>n</em>/2] - [-<em>n</em>/2] = <em>k</em> - (-<em>k</em> - 1) = 2<em>k</em> + 1 = <em>n</em>

3 0
2 years ago
There are 3 consecutive odd integers with a sum of 45. What is the greatest of the 3<br> integers
jeyben [28]

Answer:

15,17,19

so the answer is 17

3 0
2 years ago
What is the complimentary angle of 72 degrees
Irina18 [472]

Answer: 18°

Step-by-step explanation:

Complementary angles are any two angles whose sum is 90 degrees. Hence, if angles x and y are complimentary, we can say

x + y = 90°

Therefore, the complimentary angle of 72° is obtained by subtracting 72° from 90°

i.e 90° - 72° = 18°

Thus, the complimentary angle of 72° is 18°

4 0
3 years ago
Read 2 more answers
One side of triangle is 4cm longer than the shortest side and 2cm shorter than the longest side the perimeter is 38cm what are t
o-na [289]
9.3, 13.3, 15.3
Hope it helps!
7 0
3 years ago
Read 2 more answers
Other questions:
  • Pleaseeeeeeeee help!!!
    8·1 answer
  • Please help please please
    15·1 answer
  • A new electronic store opened recently. There are several sales associate positions that pay an hourly rate of $7.50 plus a 4.5%
    10·1 answer
  • What is 275,608 rounded to the nearest thousand
    13·1 answer
  • Can someone please help me ?
    13·1 answer
  • The value of a collectible coin can be represented by the equation y = 2x + 9.74 , where x represents the number of years that C
    8·2 answers
  • I need helppp on this question
    6·2 answers
  • -5b-17=18<br><br> plz help asap<br> what is the answer<br> and what does b stand for??!?
    11·1 answer
  • How would I figure this out?
    6·1 answer
  • Select all of the equations for which = 6 is a solution.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!