Answer:
Step-by-step explanation:
The simple interest on a certain sum for 5years at 8% per annum is Rs200 less than the simple interest on the same sum for 3years and 4months at 18% per annum.Find the sum
The formula for Simple Interest = PRT
From above question, we have to find the Principal
The simple interest on a certain sum for 5years at 8% per annum is Rs200
Hence,
R = 8%
T = 5 years
Rs 200 = P × 8% × 5
P = 200/8% × 5
P = Rs500
The principal = Rs 500
The simple interest on the same sum for 3years and 4months at 18% per annum.
Simple Interest = PRT
R = 18%
T = 3 years and 4 months
Converted to years
T = 3 + (4 months/12 months)
T = 3.33 years
Hence,
Simple Interest = Rs 500 × 18% × 3.33 years
= Rs 299.7
Answer:
12
Step-by-step explanation:
Answer: Subtract 3 from each side of the equation(A)
Step-by-step explanation:
3n2−15n=3
1:Subtract 3n2 from both sides.
-15n=3-3n2
2:Divide both sides by -15.
-15n/-15=3-3n2/-15
3:Dividing by −15 undoes the multiplication by −15.
n=3-3n2/-15
4:Divide 3−3n 2 by −15
n=n2-1/5
Answer:
0.293 s
Step-by-step explanation:
Using equations of motion,
y = 66.1 cm = 0.661 m
v = final velocity at maximum height = 0 m/s
g = - 9.8 m/s²
t = ?
u = initial takeoff velocity from the ground = ?
First of, we calculate the initial velocity
v² = u² + 2gy
0² = u² - 2(9.8)(0.661)
u² = 12.9556
u = 3.60 m/s
Then we can calculate the two time periods at which the basketball player reaches ths height that corresponds with the top 10.5 cm of his jump.
The top 10.5 cm of his journey starts from (66.1 - 10.5) = 55.6 cm = 0.556 m
y = 0.556 m
u = 3.60 m/s
g = - 9.8 m/s²
t = ?
y = ut + (1/2)gt²
0.556 = 3.6t - 4.9t²
4.9t² - 3.6t + 0.556 = 0
Solving the quadratic equation
t = 0.514 s or 0.221 s
So, the two time periods that the basketball player reaches the height that corresponds to the top 10.5 cm of his jump are
0.221 s, on his way to maximum height and
0.514 s, on his way back down (counting t = 0 s from when the basketball player leaves the ground).
Time spent in the upper 10.5 cm of the jump = 0.514 - 0.221 = 0.293 s.