Answer: D. They show that neither theory is complete and entirely correct.
Explanation:
Theory is the set of rules and principles that describe and explain a particular phenomenon (the existence of the moon in this case) and is subject to changes as new evidence emerges that gives meaning to it.
In this sense, there are many theories about the Earth's moon formation and two of the "accepted" theories are described before the question. In addition, both theories explain in a certain way the reason why the Moon is predominantly composed of elements similar to those found on Earth.
However, both theories seem to be incomplete when trying to explain our Moon's origin.
1.
-Water levels are dangerously high for wildlife and humans.
-Animals seem to be lost, like the cow and the sheep especially.
2.
-There are not many trees near the water, meaning less areas for wildlife to live.
-There is not much wildlife in general.
Inferences
1. The wildlife shown will move relocate and adapt to another area.
2. Industry — emissions are visible in top left— will continue to hurt the environment. CO2 emissions will increase.
Good luck!
Answer:oxygen Explanation:The medical condition described here is anaemia. It is a blood cell disorder whereby the red blood cell doesn't function properly and hence doesn't carry enough oxygen to the tissues. This is usually caused when ones body is deficient of iron.The symptoms that may occur to such patients are weakness, fatigue, headache and pale skin.Based on the explanation, the answer is oxygen
Explanation:
Answer:
1.772 gram is the approximate answer
Explanation:
molecular mass of AlCl3 is 132 g per mole and of Al(OH)3 is 78 g per mole
the reaction is
AlCl3 + 3 NaOH ---> Al(OH)3 + 3 NaCl
from the reaction it is clear that 1 mole AlCl3 makes 1 mole Al(OH)3
implies 132g AlCl3 gives 78g Al(OH)3
Implies 3g AlCl3 gives
3*122/78 = 1.772 grams
Answer:
True
Explanation:
In an uncompetitive inhibition, initially the substrate [S] binds to the active site of the enzyme [E] and forms an enzyme-substrate activated complex [ES].
The inhibitor molecule then binds to the enzyme- substrate complex [ES], resulting in the formation of [ESI] complex, thereby inhibiting the reaction.
This inhibition is called uncompetitive because the inhibitor does not compete with the substrate to bind on the active site of the enzyme.
Therefore, in an uncompetitive inhibition, the inhibitor molecule can not bind on the active site of the enzyme directly. The inhibitor can only bind to the enzyme-substrate complex formed.