Answer:
a) Sulphur + Oxygen → Sulphur dioxide
b) Carbon + Oxygen → Carbon dioxide
c) Sulphur + Iron → Iron sulphide
Answer:
neq N2O4 = 0.9795 mol.....P = 0.5 atm; T = 25°C
Explanation:
ni change eq.
N2O4 1 1 - x 0.8154.....P = 1 atm; T = 25°C
NO2 0 0 + x x
∴ x = neq = Peq.V / R.T.....ideal gas mix
if P = 0.5 atm, T = 25°C; assuming: V = 1 L
⇒ x = neq = ((0.5 atm)(1 L))/((0.082 atm.L/K.mol)(298 K))
⇒ x = neq = 0.0205 mol
⇒ neq N2O4 = 1 - x = 1 - 0.0205 = 0.9795 mol
Answer:
31.7 °C
Explanation:
Charles law states that for volume of a gas is directly proportional to the absolute temperature for a fixed amount of gas at constant pressure
we can use the following equation
V1/T1 = V2/T2
where V1 is volume and T1 is temperature at first instance
V2 is volume and T2 is temperature at second instance
temperature should be in kelvin scale
T1 - 0 °C + 273 = 273 K
substituting the values in the equation
22.4 L / 273 K = 25.0 L / T2
T2 = 304.7 K
temperature in celcius is - 304.7 K - 273 = 31.7 °C
the gas must be 31.7 °C to reach a volume of 25.0 L
Answer:
A reduction potential measures the tendency of a molecule to be reduced by taking up new electrons. ... Standard reduction potentials can be useful in determining the directionality of a reaction. The reduction potential of a given species can be considered to be the negative of the oxidation potential.
Explanation:
Answer:
The answer to your question is 64.02 g of H₂O
Explanation:
Data
Mass of magnesium sulfate hepta hydrated = 125 g
Mass of water = ?
Process
1.- Calculate the molar mass of the salt and the molar mass of water
molar mass of MgSO₄ 7H₂O = 24 + 32 + 64 + 14 + 112 = 246 g
mass of H₂O = 2 + 16 = 18 g
2.- Use proportions to calculate the mass of water in the epsom salt
246 g MgSO₄ 7H₂O------------------------- 126 g of H₂O
125 g ------------------------- x
x = (125 x 126)/246
x = 15750/246
x = 64.02 g of H₂O